Increasing evidence shows that diabetes causes cardiac dysfunction. We hypothesized that a glucagon-like peptide-1 analogue, liraglutide, would attenuate cardiac dysfunction in diabetic rats. Twenty-four Sprague Dawley (SD) rats were divided into 2 groups fed either a normal diet (normal, n = 6) or a high-fat diet (HFD, n = 18) for 4 weeks. Then, the HFD rats were injected with streptozotocin (STZ) to create a diabetic rat model. Diabetic rats were divided into 3 subgroups receiving vehicle (diabetic, n = 6), a low dose of liraglutide (Llirag, 0.2 mg/kg/day, n = 6) or a high dose of liraglutide (Hlirag, 0.4 mg/kg/day, n = 6). Metabolic parameters, systolic blood pressure, heart rate, left ventricular (LV) function, and whole genome expression of the heart were determined. Diabetic rats developed insulin resistance, increased blood lipid levels and oxidative stress, and impaired LV function, serum adiponectin, NO. Liraglutide improved insulin resistance, serum adiponectin, NO, heart rate and LV function and reduced blood triglyceride, total cholesterol levels and oxidative stress. Moreover, liraglutide increased heart , and expression and reduced , and expression. Liraglutide prevented in cardiac dysfunction by activating the PPARα pathway to inhibit expression and oxidative stress in diabetic rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5857913PMC
http://dx.doi.org/10.1042/BSR20180059DOI Listing

Publication Analysis

Top Keywords

diabetic rats
20
cardiac dysfunction
12
oxidative stress
12
pparα pathway
8
rats divided
8
dose liraglutide
8
heart rate
8
insulin resistance
8
levels oxidative
8
serum adiponectin
8

Similar Publications

Low magnesium (Mg) intake increases the risk of various diseases such as anxiety disorder, depression, and diabetes. However, a reliable biomarker of mild Mg deficiency due to low Mg intake has not yet been identified. We speculate that metabolomics will be effective for biomarker discovery because Mg can affect various metabolic processes in the body.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is an intricate disease correlated with many metabolic deregulations, including disordered glucose metabolism, oxidative stress, inflammation, and cellular apoptosis due to hepatic gluconeogenesis aberrations. However, there is no radical therapy to inhibit hepatic gluconeogenesis disturbances yet. We thus sought to probe the effectiveness and uncover the potential mechanism of quercetin (QCT) and silk sericin (SS) in mitigating hyperglycemia-induced hepatic gluconeogenesis disorder, which remains obscure.

View Article and Find Full Text PDF

Biomolecular Microneedle Initiates FeO/MXene Heterojunction-Mediated Nanozyme-Like Reactions and Bacterial Ferroptosis to Repair Diabetic Wounds.

Adv Sci (Weinh)

January 2025

Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

Reactive oxygen species (ROS) play a dual role in wound healing. They act as crucial signaling molecules and antimicrobial agents when present at moderate levels. However, excessive levels of ROS can hinder the healing process for individuals with diabetes.

View Article and Find Full Text PDF

Aim: Pancreatic β-cells are susceptible to inflammation, leading to decreased insulin production/secretion and cell death. Previously, we have identified a novel triceps-derived myokine, DECORIN, which plays a pivotal role in skeletal muscle-to-pancreas interorgan communication. However, whether DECORIN can directly impact β-cell function and susceptibility to inflammation remains unexplored.

View Article and Find Full Text PDF

Background: Diabetic neuropathy (DN) is a heterogeneous condition characterized by complex pathophysiological changes affecting both autonomic and somatic components of the nervous system. Inflammation and oxidative stress are recognized contributors to the pathogenesis of DN. This study aims to evaluate the therapeutic potential of dichloroacetic acid (DCA) in alleviating DN symptoms, focusing on its anti-inflammatory and antioxidant properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!