Oncogenic mutation of RAS results in aberrant cellular signaling and is responsible for more than 30% of all human tumors. Therefore, pharmacologic modulation of RAS has attracted great interest as a therapeutic strategy. Our laboratory has recently discovered small molecules that activate Son of Sevenless (SOS)-catalyzed nucleotide exchange on RAS and inhibit downstream signaling. Here, we describe how pharmacologically targeting SOS1 induced biphasic modulation of RAS-GTP and ERK phosphorylation levels, which we observed in a variety of cell lines expressing different RAS-mutant isoforms. We show that compound treatment caused an increase in phosphorylation at ERK consensus motifs on SOS1 that was not observed with the expression of a non-phosphorylatable S1178A SOS1 mutant or after pretreatment with an ERK inhibitor. Phosphorylation at S1178 on SOS1 is known to inhibit the association between SOS1 and GRB2 and disrupt SOS1 membrane localization. Consistent with this, we show that wild-type SOS1 and GRB2 dissociated in a time-dependent fashion in response to compound treatment, and conversely, this interaction was enhanced with the expression of an S1178A SOS1 mutant. Furthermore, in cells expressing either S1178A SOS1 or a constitutively membrane-bound CAAX box tagged SOS1 mutant, we observed elevated RAS-GTP levels over time in response to compound, as compared with the biphasic changes in RAS-GTP exhibited in cells expressing wild-type SOS1. These results suggest that small molecule targeting of SOS1 can elicit a biphasic modulation of RAS-GTP and phospho-ERK levels through negative feedback on SOS1 that regulates the interaction between SOS1 and GRB2. .

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-17-0666DOI Listing

Publication Analysis

Top Keywords

sos1
15
biphasic modulation
12
s1178a sos1
12
sos1 mutant
12
sos1 grb2
12
phospho-erk levels
8
negative feedback
8
feedback sos1
8
targeting sos1
8
modulation ras-gtp
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!