Background: Loropetalum subcordatum is an endangered species endemic to China that is characterized by narrow distribution, small population size, and delayed fertilization. However, the genetic diversity of the entire extant natural and ex situ populations has not been assessed to date. In this study, we evaluated the genetic diversity and structure of six natural populations and a single ex situ population (the only known ex situ population of L. subcordatum) using sequence-related amplified polymorphism data.
Results: In total, 553 reliable DNA bands, of which 359 (63.28%) were polymorphic, were amplified by polymerase chain reaction with combinations of 15 primers. Low average gene diversity within populations and high genetic differentiation were detected in L. subcordatum. A Mantel test demonstrated that there was a positive correlation between genetic and geographic distances, indicating that significant genetic divergence was likely the result of geographic isolation among natural populations. Furthermore, based on genetic structure patterns, populations of L. subcordatum were divided into three clusters. Group 1 was composed of specimens from Libo, Guizhou Province (GZ) and Huanjiang, Guangxi Zhuang Autonomous Region (GX). Group 2 was composed of Mt. Wuguishan, Guangdong Province (GD). Group 3 was composed of three populations in Hong Kong Special Administrative Region. Additionally, clonal reproduction probably existed in GD population. According to the genetic information analysis and field survey, the ex situ population did not match its source population (GD) in terms of genetics, and its habitat was different from the original natural habitat. We observed that a few individual GD seeds were needed to improve ZS ex situ in the future.
Conclusions: Compared to previous SRAP-based studies of endangered plants, L. subcordatum had extremely low average gene diversity within populations and high genetic differentiation among populations. At present, the unique ex situ population has not been successful due to non-representative samples being taken, a smaller population size, and man-made changes in habitat. Potential strategies are suggested to improve the conservation of this species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812050 | PMC |
http://dx.doi.org/10.1186/s12863-018-0599-6 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Nanjing University, School of Chemistry and Chemical Engineering, CHINA.
Proximity labeling (PL) has emerged as a powerful technique for the in situ elucidation of biomolecular interaction networks. However, PL methods generally rely on single-biological-hierarchy control of spatial localization at the labeling site, which limits their application in multi-tiered biological systems. Here, we introduced another enzymatic reaction upstream of an enzyme-based PL reaction and targeted the two enzymes to markers indicating different biological hierarchies, establishing a two-level spatially localized proximity labeling (P2L) platform for in situ molecular measurement and manipulation.
View Article and Find Full Text PDFGastro Hep Adv
September 2024
Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
Background And Aims: Refractory celiac disease type II (RCDII) is characterized by a clonally expanded aberrant cell population in the small intestine. The role of other tissue-resident immune subsets in RCDII is unknown. Here, we characterized CD8 and CD4 T cells in RCDII duodenum at the single-cell level and .
View Article and Find Full Text PDFMed J Aust
January 2025
Sydney School of Public Health, the University of Sydney, Sydney, NSW.
Objectives: To assess the impact of the transition from film to digital mammography in the Australian national breast cancer screening program.
Study Design: Retrospective linked population health data analysis (New South Wales Central Cancer Registry, BreastScreen NSW); interrupted time series analysis.
Setting: New South Wales, 2002-2016.
Environ Monit Assess
January 2025
Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.
Saussurea medusa is a rare alpine plant with significant medicinal value. To better understand the changes in its habitat in the context of climate change, this study used an optimized MaxEnt model to predict the current and future habitat of S. medusa under four shared socioeconomic pathways (SSPs) across three time periods (current, mid-century, and end-century) based on three climate system models.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand.
Global declines in wild mussel populations and production have been linked to the impacts of climate change and pollution. Summer die-offs of mussels (Perna canaliculus), spat retention issues, and a severe decline in mussel spat settlement have been reported in the Marlborough Sounds, an important area for mussel farming in New Zealand. Preliminary evidence suggests that naturally occurring contaminants and changing land use in the surrounding areas, could contribute to the decline of this species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!