Background: Gene fusions often occur in cancer cells and in some cases are the main driver of oncogenesis. Correct identification of oncogenic gene fusions thus has implications for targeted cancer therapy. Recognition of this potential has led to the development of a myriad of sequencing-based fusion detection tools. However, given the same input, many of these detectors will find different fusion points or claim different sets of supporting data. Furthermore, the rate at which these tools falsely detect fusion events in data varies greatly. This discrepancy between tools underscores the fact that computation algorithms still cannot perfectly evaluate evidence; especially when provided with small amounts of supporting data as is typical in fusion detection. We assert that when evidence is provided in an easily digestible form, humans are more proficient in identifying true positives from false positives.
Results: We have developed a web tool that, given the genomic coordinates of a candidate fusion breakpoint, will extract fusion and non-fusion reads adjacent to the fusion point from partner transcripts, and color code reads by transcript origin and read orientation for ease of intuitive inspection by the user. Fusion partner transcript read alignments are performed using a novel variant of the Smith-Waterman algorithm.
Conclusions: Combined with dynamic filtering parameters, the visualization provided by our tool introduces a powerful new investigative step that allows researchers to comprehensively evaluate fusion evidence. Additionally, this allows quick identification of false positives that may deceive most fusion detectors, thus eliminating unnecessary gene fusion validation. We apply our visualization tool to publicly available datasets and provide examples of true as well as false positives reported by open source fusion detection tools.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812216 | PMC |
http://dx.doi.org/10.1186/s12864-018-4486-3 | DOI Listing |
In Vitro Cell Dev Biol Anim
January 2025
Department of Outpatient Service, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.
The objective of this study is to explore how adipose-derived stem cells (ASCs) regulate mitochondrial structure and function and the impact of this regulation on slowing cellular senescence. HFF-1 cells were induced by HO to establish a cellular senescence model, and ASCs or Mdivi-1 (mitochondrial fission inhibitor) was added. MTT examined the cell proliferation; flow cytometry detected mitochondrial membrane potential as well as apoptosis and cell cycle; kit measured ATP production; ELISA analyzed the levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β), tumor necrosis factor alpha-like (TNF-α), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD); Western blotting and qRT-PCR detected the expression of protein and mRNA levels; and β-galactosidase staining observed the degree of cellular senescence.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
Purpose: The study explores the role of multimodal imaging techniques, such as [F]F-PSMA-1007 PET/CT and multiparametric MRI (mpMRI), in predicting the ISUP (International Society of Urological Pathology) grading of prostate cancer. The goal is to enhance diagnostic accuracy and improve clinical decision-making by integrating these advanced imaging modalities with clinical variables. In particular, the study investigates the application of few-shot learning to address the challenge of limited data in prostate cancer imaging, which is often a common issue in medical research.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
January 2025
MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
Activation of Ca channels in Ca stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca]) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca uptake and chelation, alongside efficient Ca release mechanisms. Still, mitochondria do not store Ca in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca] signals.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
Iron-sulfur clusters are essential metallocofactors synthesized by multiprotein machineries via an unclear multistep process. Here we report a step-by-step dissection of the [2Fe-2S] cluster assembly process by the Escherichia coli iron-sulfur cluster (ISC) assembly machinery using an in vitro reconstituted system and a combination of biochemical and spectroscopic techniques. We show that this process is initiated by iron binding to the scaffold protein IscU, which triggers persulfide insertion by the cysteine desulfurase IscS upon the formation of a complex with IscU.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China.
With the emergence of numerous classifications, surgical treatment for adolescent idiopathic scoliosis (AIS) can be guided more effectively. However, surgical decision-making and optimal strategies still lack standardization and personalized customization. Our study aims to devise proper deep learning (DL) models that incorporate key factors influencing surgical outcomes on the coronal plane in AIS patients to facilitate surgical decision-making and predict surgical results for AIS patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!