We report on the successful functionalization of cotton fabrics with a water-stable metal-organic framework (MOF), UiO-66, under mild solvothermal conditions (80 °C) and its ability to adsorb and degrade water micropollutants. The functionalized cotton samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). UiO-66 crystals grew in a uniform and conformal manner over the surface of the cotton fibers. The cotton fabrics functionalized with UiO-66 frameworks exhibited an enhanced uptake capacity for methylchlorophenoxypropionic acid (MCPP), a commonly used herbicide. The functionalized fabrics also showed photocatalytic activity, demonstrated by the degradation of acetaminophen, a common pharmaceutical compound, under simulated sunlight irradiation. These results indicate that UiO-66 can be supported on textile substrates for filtration and photocatalytic purposes and that these substrates can find applications in wastewater decontamination and micropollutant degradation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874880 | PMC |
http://dx.doi.org/10.3390/bioengineering5010014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!