Polyetherimide (PEI) blends modified by either polycarbonate (PC) or polyethylene terephthalate glycol-modified (PETG) were prepared. The latter modifier (PETG) was an industrial grade widely used for fused deposition modelling (FDM) printing. PEI blends were compared to Ultem 9085, which is the standard PEI grade for FDM printing in advanced applications. All the blends were thoroughly characterized in terms of their rheological, morphological, thermomechanical and tensile properties. Ultem 9085 showed improved rheology for processing over standard PEI. PEI/PC blends with 10 wt % of modifier developed here closely matched the viscosity behavior of Ultem 9085. On the other hand, the blends with low PC content (i.e., less than 20 wt %) outperformed Ultem 9085 in terms of thermal and tensile properties. When PETG was added, similar tensile properties to Ultem 9085 were found. The immiscibility for PC contents higher than 20 wt % deteriorated the tensile properties, making it less attractive for applications, although melt viscosity decreased further for increasing PC contents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5848982 | PMC |
http://dx.doi.org/10.3390/ma11020285 | DOI Listing |
Polymers (Basel)
January 2025
Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena 3, LV-1048 Riga, Latvia.
Despite the impressive properties of additively manufactured products, their inherent anisotropy is a crucial challenge for polymeric parts made via fused filament fabrication (FFF). This study compared the tensile, thermophysical, smoke density, and toxicity characteristics of Ultem 9085 (a blend of polyetherimide and polycarbonate) for samples printed in various orientations (X, Y, and Z). The results revealed that mechanical properties, such as elastic modulus and tensile strength, significantly differed from the Z printing orientation, particularly in the X and Y printing layer orientations.
View Article and Find Full Text PDFMaterials (Basel)
October 2024
Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland.
This article presents the concept, research, and modeling of a sandwich composite made from ULTEM 9085 and polycarbonate (PC). ULTEM 9085 is relatively expensive compared to polycarbonate, and the composite structure made of these two materials allows for maintaining the physical properties of ULTEM while reducing the overall costs. The composite consisted of outer layers made of ULTEM 9085 and a core made of polycarbonate.
View Article and Find Full Text PDFPolymers (Basel)
June 2024
Centre for Rapid and Sustainable Product Development, CDRSP, Polytechnic of Leiria, Rua de Portugal, 2430-028 Marinha Grande, Portugal.
The study presented herein concerns the mechanical properties of two common polymers for potential biomedical applications, PLA and PETG, processed through fused filament fabrication (FFF)-Material Extrusion (ME). For the uniaxial tension tests carried out, two printing orientations-XY (Horizontal, H) and YZ (Vertical, V)-were considered according to the general principles for part positioning, coordinates, and orientation typically used in additive manufacturing (AM). In addition, six specimens were tested for each printing orientation and material, providing insights into mechanical properties such as Tensile Strength, Young's Modulus, and Ultimate Strain, suggesting the materials' potential for biomedical applications.
View Article and Find Full Text PDFPolymers (Basel)
January 2024
Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, WA 98195-2120, USA.
The long-term durability of polymer components produced by additive manufacturing (AM) in marine conditions is poorly understood. Here, fused filament fabrication (FFF) of Ultem 9085 was conducted and accelerated aging was performed. Two printing orientations (-45/45° and 0/90°) and two sample types (ASTM D638 Type 1 and Type 4) were produced and subjected to accelerated aging in either seawater or air.
View Article and Find Full Text PDFPolymers (Basel)
January 2023
Institute of Solid State Physics, Kengaraga 8, LV-1063 Riga, Latvia.
This paper aimed to estimate the effect of post-printing cooling conditions on the tensile and thermophysical properties of ULTEM 9085 printed parts processed by fused deposition modeling (FDM). Three different cooling conditions were applied after printing Ultem samples: from 180 °C to room temperature (RT) for 4 h in the printer (P), rapid removal from the printer and cooling from 200 °C to RT for 4 h in the oven (O), and cooling at RT (R). Tensile tests and dynamic mechanical thermal analysis (DMTA) were carried out on samples printed in three orthogonal planes to investigate the effect of the post-printing cooling conditions on their mechanical and thermophysical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!