A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Isolation and characterization of a quinclorac-degrading Actinobacteria Streptomyces sp. strain AH-B and its implication on microecology in contaminated soil. | LitMetric

Quinclorac, a highly selective auxin herbicide, is widely used for controlling weeds in rice field. However, the residual quinclorac is toxic to many crops, vegetables, and aquatic animals, resulting in one of the major problems in crop rotation. Here, we investigated the degradation of quinclorac by strain AH-B, which was isolated from long-term quinclorac-contaminated soil using continuous circulating fluidized bed reactor and subjected to atmospheric and room temperature plasma mutation. Morphological examination, 16S rRNA gene sequencing, and phylogenetic analysis revealed that strain AH-B was Streptomyces sp. The quinclorac degradation efficiency of AH-B in liquid medium was 97.2% after 18 days when the initial quinclorac concentration was 20 mg L. The degradation products were 3-chloro-7-methoxy-8-quinoline-carboxylic, 3-chloro-7-methyl-8-quinoline-carboxylic, 3-chloro-7-oxyethyl-8-quinoline-carboxylic, and 3,7-dichloro-6-methyl-8-quinoline-carboxylic. The inoculum size, initial quinclorac concentration, pH, and temperature were found to affect quinclorac degradation efficiency of AH-B. High-performance liquid chromatography-electrospray ionization tandem mass spectrometry analysis revealed that quinclorac degradation by AH-B produced many products. In soil with initial quinclorac content of 1 mg kg dry soil, addition of AH-B resulted in 87.5% quinclorac degradation after 42 days, while that in the control (without AH-B) was 22.4%. Furthermore, microecological analysis using next-generation sequencing of 16S rRNA geneshowed that some bacterial species, such as Bacterioides and Proteobacteria, could survive in quinclorac-contaminated soil, while some bacteria, such as Firmicutes, were very sensitive to quinclorac. Besides, some fungal species, such as Basidiomycota, could also survive quinclorac-contamination. After 42 days, the diversity of bacteria and fungi in soil treated with AH-B was higher than that in the control, implying that bioaugmentation with strain AH-B could reduce quinclorac toxicity to microorganisms in soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.01.133DOI Listing

Publication Analysis

Top Keywords

strain ah-b
16
quinclorac degradation
16
quinclorac
12
initial quinclorac
12
ah-b
10
quinclorac-contaminated soil
8
16s rrna
8
analysis revealed
8
degradation efficiency
8
efficiency ah-b
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!