Developing lignin-based bio-nanofibers by centrifugal spinning technique.

Int J Biol Macromol

Temag Labs, Istanbul Technical University, Istanbul, Turkey; Areka Advanced Ltd., Istanbul, Turkey.

Published: July 2018

Lignin-based nanofibers were produced via centrifugal spinning from lignin-thermoplastic polyurethane polymer blends. The most suitable process parameters were chosen by optimization of the rotational speed, nozzle diameter and spinneret-to-collector distance using different blend ratios of the two polymers at different total polymer concentrations. The basic characteristics of polymer solutions were enlightened by their viscosity and surface tension. The morphology of the fibers produced was characterized by SEM, while their thermal properties by DSC and TG analysis. Multiply regression was used to determine the parameters that have higher impact on the fiber diameter. It was possible to obtain thermally stable lignin/polyurethane nanofibers with diameters below 500nm. From the aspect of spinnability, 1:1 lignin/TPU contents were shown to be more feasible. On the other side, the most suitable processing parameters were found to be angular velocity of 8500rpm for nozzles of 0.5mm diameter and working distance of 30cm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2018.02.047DOI Listing

Publication Analysis

Top Keywords

centrifugal spinning
8
developing lignin-based
4
lignin-based bio-nanofibers
4
bio-nanofibers centrifugal
4
spinning technique
4
technique lignin-based
4
lignin-based nanofibers
4
nanofibers produced
4
produced centrifugal
4
spinning lignin-thermoplastic
4

Similar Publications

In recent decades, electrokinetic handling of microparticles and biological cells found many applications ranging from biomedical diagnostics to microscale assembly. The integration of electrokinetic handling such as dielectrophoresis (DEP) greatly benefits microfluidic point-of-care systems as many modern assays require cell handling. Compared to traditional pump-driven microfluidics, typically used for DEP applications, centrifugal CD microfluidics provides the ability to consolidate various liquid handling tasks in self-contained discs under the control of a single motor.

View Article and Find Full Text PDF

Factors that affect alginates: a brief review.

Minerva Dent Oral Sci

January 2025

School of Dentistry, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy -

Alginates are widely used in dentistry for various applications due to their favorable properties, including ease of use, cost-effectiveness, and patient comfort. They are commonly employed for preliminary impressions of oral structures in dental practice. This study aims to assess the impact of different factors on the performance of alginate impression materials in dentistry.

View Article and Find Full Text PDF

Liposomes are employed for the delivery of molecular cargo in several classes of systems. For instance, the embedding of loaded liposomes in polymeric fibrous scaffolds has enabled the creation of hybrid materials that mimic biological membranes. Liposomes with unmodified surfaces have been predominantly integrated into fibers, which leads to instabilities due to interfacial incompatibility.

View Article and Find Full Text PDF

Alginate/gelatin blend fibers for functional high-performance air filtration applications.

Int J Biol Macromol

December 2024

Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey. Electronic address:

Currently, the primary composition of fibrous filter materials predominantly relies on synthetic polymers derived from petroleum. The utilization of these polymers, as well as their production process, has a negative impact on the environment. Consequently, the adoption of air filter media fabricated from natural fibers would yield significant environmental benefits.

View Article and Find Full Text PDF

Processing and Properties of Polyhydroxyalkanoate/ZnO Nanocomposites: A Review of Their Potential as Sustainable Packaging Materials.

Polymers (Basel)

October 2024

Materials and Packaging Research & Services (MPPR&S), Institute for Materials Research (Imo-Imomec), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium.

The escalating environmental concerns associated with conventional plastic packaging have accelerated the development of sustainable alternatives, making food packaging a focus area for innovation. Bioplastics, particularly polyhydroxyalkanoates (PHAs), have emerged as potential candidates due to their biobased origin, biodegradability, and biocompatibility. PHAs stand out for their good mechanical and medium gas permeability properties, making them promising materials for food packaging applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!