A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cardioprotection by ischemic postconditioning and cyclic guanosine monophosphate-elevating agents involves cardiomyocyte nitric oxide-sensitive guanylyl cyclase. | LitMetric

AI Article Synopsis

  • The study investigates the role of nitric oxide-sensitive guanylyl cyclase (NO-GC) in cardiomyocytes during acute myocardial infarction (AMI) and its potential benefits in reducing heart damage.
  • Experimental results show that mice lacking CM NO-GC experienced increased blood pressure but did not have differing infarct sizes compared to controls after ischemia/reperfusion injury, indicating a complex role of NO-GC in heart protection.
  • The findings suggest that while CM NO-GC is crucial for cardioprotection from iPost and certain drugs that enhance cGMP levels, cardioprotection can still be achieved through other pathways, such as the use of potassium channel openers.

Article Abstract

Aims: It has been suggested that the nitric oxide-sensitive guanylyl cyclase (NO-GC)/cyclic guanosine monophosphate (cGMP)-dependent signalling pathway affords protection against cardiac damage during acute myocardial infarction (AMI). It is, however, not clear whether the NO-GC/cGMP system confers its favourable effects through a mechanism located in cardiomyocytes (CMs). The aim of this study was to evaluate the infarct-limiting effects of the endogenous NO-GC in CMs in vivo.

Methods And Results: Ischemia/reperfusion (I/R) injury was evaluated in mice with a CM-specific deletion of NO-GC (CM NO-GC KO) and in control siblings (CM NO-GC CTR) subjected to an in vivo model of AMI. Lack of CM NO-GC resulted in a mild increase in blood pressure but did not affect basal infarct sizes after I/R. Ischemic postconditioning (iPost), administration of the phosphodiesterase-5 inhibitors sildenafil and tadalafil as well as the NO-GC activator cinaciguat significantly reduced the amount of infarction in control mice but not in CM NO-GC KO littermates. Interestingly, NS11021, an opener of the large-conductance and Ca2+-activated potassium channel (BK), an important downstream effector of cGMP/cGKI in the cardiovascular system, protects I/R-exposed hearts of CM NO-GC proficient and deficient mice.

Conclusions: These findings demonstrate an important role of CM NO-GC for the cardioprotective signalling following AMI in vivo. CM NO-GC function is essential for the beneficial effects on infarct size elicited by iPost and pharmacological elevation of cGMP; however, lack of CM NO-GC does not seem to disrupt the cardioprotection mediated by the BK opener NS11021.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvy039DOI Listing

Publication Analysis

Top Keywords

no-gc
11
ischemic postconditioning
8
nitric oxide-sensitive
8
oxide-sensitive guanylyl
8
guanylyl cyclase
8
lack no-gc
8
cardioprotection ischemic
4
postconditioning cyclic
4
cyclic guanosine
4
guanosine monophosphate-elevating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!