The conserved function of protein phosphorylation, catalysed by members of protein kinase superfamily, is regulated in different ways in different kinase families. Further, differences in activating triggers, cellular localisation, domain architecture and substrate specificity between kinase families are also well known. While the transfer of γ-phosphate from ATP to the hydroxyl group of Ser/Thr/Tyr is mediated by a conserved Asp, the characteristic functional and regulatory sites are specialized at the level of families or sub-families. Such family-specific sites of functional specialization are unknown for most families of kinases. In this work, we systematically identify the family-specific residue features by comparing the extent of conservation of physicochemical properties, Shannon entropy and statistical probability of residue distributions between families of kinases. An integrated discriminatory score, which combines these three features, is developed to demarcate the functionally specialized sites in a kinase family from other sites. We achieved an area under ROC curve of 0.992 for the discrimination of kinase families. Our approach was extensively tested on well-studied families CDK and MAPK, wherein specific protein interaction sites and substrate recognition sites were successfully detected (p-value < 0.05). We also find that the known family-specific oncogenic driver mutation sites were scored high by our method. The method was applied to all known kinases encompassing 107 families from diverse eukaryotic organisms leading to a comprehensive list of family-specific functional sites. Apart from other uses, our method facilitates identification of specific protein interaction sites and drug target sites in a kinase family.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826538PMC
http://dx.doi.org/10.1371/journal.pcbi.1005975DOI Listing

Publication Analysis

Top Keywords

kinase families
16
sites
10
families
9
recognition sites
8
sites functional
8
protein kinase
8
families kinases
8
sites kinase
8
kinase family
8
specific protein
8

Similar Publications

RSK4 promotes the metastasis of clear cell renal cell carcinoma by activating RUNX1-mediated angiogenesis.

Cancer Biol Ther

December 2025

State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi'an, China.

Ribosomal S6 protein kinase 4 (RSK4), a member of the serine‒threonine kinase family, plays a vital role in the Ras‒MAPK pathway. This kinase is responsible for managing several cellular activities, including cell growth, proliferation, survival, and mobility. In this study, we observed higher RSK4 protein expression in clear cell renal cell carcinoma (ccRCC) than in normal kidney tissue, and the overexpression of RSK4 might predict poor outcomes for ccRCC patients.

View Article and Find Full Text PDF

Hepatoblastoma (HBL) and fibrolamellar hepatocellular carcinoma (FLC) are the most common liver malignancies in children and young adults. FLC oncogenesis is associated with the generation of the fusion kinase, DNAJB1-PKAc (J-PKAc). J-PKAc has been found in 90% of FLC patients' tumors but not in other liver cancers.

View Article and Find Full Text PDF

Genome-Wide Identification and Functional Characterization of Gene Family Reveal Its Involvement in Response to Stress in Cotton.

Int J Mol Sci

January 2025

Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.

SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.

View Article and Find Full Text PDF

Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and treatment-resistant OC remains a challenge.

View Article and Find Full Text PDF

Polycystic ovarian syndrome (PCOS) is a multifaceted metabolic and hormonal disorder in females of reproductive age, frequently associated with cardiac disturbances. This research aimed to explore the protective potential of adropin and/or tirzepatide (Tirze) on cardiometabolic aberrations in the letrozole-induced PCOS model. Female Wistar non-pregnant rats were allotted into five groups: CON; PCOS; PCOS + adropin; PCOS + Tirze; and PCOS + adropin+ Tirze.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!