Duck-targeted vaccines to protect against avian influenza are critically needed to aid in influenza disease control efforts in regions where ducks are endemic for highly pathogenic avian influenza (HPAI). Duck enteritis virus (DEV) is a promising candidate viral vector for development of vaccines targeting ducks, owing to its large genome and narrow host range. The clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 system is a versatile gene-editing tool that has proven beneficial for gene modification and construction of recombinant DNA viral vectored vaccines. Currently, there are two commonly used methods for gene insertion: non-homologous end-joining (NHEJ) and homology-directed repair (HDR). Owing to its advantages in efficiency and independence from molecular requirements of the homologous arms, we utilized NHEJ-dependent CRISPR/Cas9 to insert the influenza hemagglutinin (HA) antigen expression cassette into the DEV genome. The insert was initially tagged with reporter green fluorescence protein (GFP), and a Cre-Lox system was later used to remove the gene insert. Furthermore, a universal donor plasmid system was established by introducing double bait sequences that were independent of the viral genome. In summary, we provide proof of principle for generating recombinant DEV viral vectored vaccines against the influenza virus using an integrated NHEJ-CRISPR/Cas9 and Cre-Lox system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850388 | PMC |
http://dx.doi.org/10.3390/v10020081 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
Purpose: Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland.
CD19-Cre is an important and widely used Cre-lox model for B cell-specific genetic manipulation in murine systems. Mice carrying one allele of CD19-Cre are, at the same time, rendered heterozygote for CD19, a crucial coreceptor of the B cell antigen receptor (BCR). As a result, CD19-Cre mice exhibit diminished expression levels of CD19, with potential, yet insufficiently examined, consequences in B cell activation.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Aix Marseille Univ, INSERM, MMG (Marseille Medical Genetics), Marseille, France.
Anterior Hox genes are required for genetic identity and anterior posterior patterning of the second heart field (SHF), which contributes to the formation of the embryonic heart in vertebrates. Defective contribution of SHF cells to the arterial or venous pole of the heart is often associated with severe congenital heart defects. The mouse Cre-lox system allows the activation of expression of any gene of interest in restricted tissues.
View Article and Find Full Text PDFmBio
December 2024
Institute of Cell Biology, University of Bern, Bern, Switzerland.
Unlabelled: Trypanosomes have different ways of communicating with each other. While communication via quorum sensing, or by the release and uptake of extracellular vesicles, is widespread in nature, the phenomenon of flagellar fusion has only been observed in . We showed previously that a small proportion of procyclic culture forms (corresponding to insect midgut forms) can fuse their flagella and exchange cytosolic and membrane proteins.
View Article and Find Full Text PDFPlant J
December 2024
Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015, Conegliano, TV, Italy.
The implementation of genome editing strategies in grapevine is the easiest way to improve sustainability and resilience while preserving the original genotype. Among others, the Mildew Locus-O (MLO) genes have already been reported as good candidates to develop powdery mildew-immune plants. A never-explored grapevine target is NPR3, a negative regulator of the systemic acquired resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!