Erlotinib Protects LPS-Induced Acute Lung Injury in Mice by Inhibiting EGFR/TLR4 Signaling Pathway.

Shock

Department of Anesthesiology and Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Published: January 2019

Epidermal growth factor receptor (EGFR) has been reported to initiate the inflammatory response, but its activation in lipopolysaccharide (LPS)-induced murine model of acute lung injury (ALI) remains unclear. In this study, we investigated the role of EGFR in the LPS-induced murine model of ALI and explored whether its inhibitor erlotinib could affect the progression of lung injury. We first detected the phosphorylated EGFR (p-EGFR)/EGFR ratio at different time points after LPS stimulation, and then different concentrations of erlotinib were used to treat mice at 1 h before LPS stimulation and collected samples at the time point of the highest p-EGFR/EGFR ratio. Lung injury indicators were detected and compared among groups. EGFR and toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signal transduction factors, including p-EGFR, p-AKT, p-ERK1/2, p-p65, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), were measured with western blot. We found that the mice challenged with LPS suffered from the most serious lung injury at 24 h after LPS stimulation when the p-EGFR/EGFR ratio was relatively the highest. Erlotinib significantly diminished LPS-induced exudation of total cells, neutrophils, and proteins in BALF. Both the ELISA and western blot results showed that erlotinib attenuated the expression of TNF-α and IL-1β in LPS-induced ALI in mice. Inhibition of EGFR by erlotinib downregulated the expression of p-p65 protein level as well as blocked the activation of AKT and ERK1/2 signaling pathway. Taken together, erlotinib alleviated the LPS-induced ALI in a dose-dependent manner by suppressing EGFR activation and downregulating the NF-κB-mediated secretion of proinflammatory cytokines.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SHK.0000000000001124DOI Listing

Publication Analysis

Top Keywords

lung injury
20
p-egfr/egfr ratio
12
lps stimulation
12
acute lung
8
signaling pathway
8
lps-induced murine
8
murine model
8
western blot
8
lps-induced ali
8
erlotinib
7

Similar Publications

Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.

View Article and Find Full Text PDF

Children with bronchopulmonary dysplasia (BPD) often exhibit severe respiratory problems and significant pulmonary dysfunction during school age and adulthood. Exercise tests show a decline in cardiopulmonary function and physical performance in children with BPD, who also have a higher incidence of pulmonary hypertension. These children generally perform poorly in terms of intelligence, language, and motor development.

View Article and Find Full Text PDF

Parthenolide improves sepsis-induced coagulopathy by inhibiting mitochondrial-mediated apoptosis in vascular endothelial cells through BRD4/BCL-xL pathway.

J Transl Med

January 2025

Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.

Background: Sepsis is a systemic inflammatory syndrome that can cause coagulation abnormalities, leading to damage in multiple organs. Vascular endothelial cells (VECs) are crucial in the development of sepsis-induced coagulopathy (SIC). The role of Parthenolide (PTL) in regulating SIC by protecting VECs remains unclear.

View Article and Find Full Text PDF

Silencing of lncRNA Gm26917 Attenuates Alveolar Macrophage-mediated Inflammatory Response in LPS-induced Acute Lung Injury Via Inhibiting NKRF Ubiquitination.

Inflammation

January 2025

Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.

The inflammatory response mediated by alveolar macrophages plays a crucial role in the development of acute lung injury. Numerous studies have reported that lncRNAs are highly expressed in acute lung injury in mouse models and cell lines, and acute lung injury (ALI) can be effectively alleviated by targeting these lncRNAs. The aim of this study was to explore the mechanism by LncRNA Gm26917 regulates the inflammatory response in alveolar macrophages during acute lung injury mouse model.

View Article and Find Full Text PDF

Evaluating the effectiveness of handheld ultrasound in primary blast lung injury: a comprehensive study.

Sci Rep

January 2025

Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.

The incidence of blast injuries has been rising globally, particularly affecting the lungs due to their vulnerability. Primary blast lung injury (PBLI) is associated with high morbidity and mortality rates, while early diagnostic methods are limited. With advancements in medical technology, and portable handheld ultrasound devices, the efficacy of ultrasound in detecting occult lung injuries early remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!