Both protective and adverse effects of indoor microbial exposure on asthma have been reported, but mostly in children. To date, no study in adults has used non-targeted methods for detection of indoor bacteria followed by quantitative confirmation.A cross-sectional study of 198 asthmatic and 199 controls was conducted within the European Community Respiratory Health Survey (ECRHS) II. DNA was extracted from mattress dust for bacterial analysis using denaturing gradient gel electrophoresis (DGGE). Selected bands were sequenced and associations with asthma confirmed with four quantitative PCR (qPCR) assays.15 out of 37 bands detected with DGGE, which had at least a suggestive association (p<0.25) with asthma, were sequenced. Of the four targeted qPCRs, cluster XI confirmed the protective association with asthma. The association was dose dependent (aOR 0.43 (95% CI 0.22-0.84) for the fourth first quartile, p for trend 0.009) and independent of other microbial markers. Few significant associations were observed for the three other qPCRs used.In this large international study, the level of cluster XI was independently associated with a lower risk of prevalent asthma. Results suggest the importance of environmental bacteria also in adult asthma, but need to be confirmed in future studies.

Download full-text PDF

Source
http://dx.doi.org/10.1183/13993003.01241-2017DOI Listing

Publication Analysis

Top Keywords

indoor bacteria
8
bacteria asthma
4
asthma adults
4
adults multicentre
4
multicentre case-control
4
case-control study
4
study ecrhs
4
ecrhs protective
4
protective adverse
4
adverse effects
4

Similar Publications

Revealing Stachybotrys-like fungal growth in buildings - Possible exposure highlighted through three case studies.

Sci Total Environ

January 2025

Department of Civil Engineering, Aalto University, 00076 Espoo, Finland; International Laboratory for Air Quality and Health, Faculty of Science, School of Earth & Atmospheric Sciences, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia. Electronic address:

Genus Stachybotrys (Stachybotryaceae, Hypocreales) requires high humidity to grow and represents one of the most notorious fungi associated with suspected illness in moist buildings. If Stachybotrys conidia are found in settled indoor dusts, their presence may indicate water intrusion and mold infestation revealed after dismantling the building structures. This study describes detection of Stachybotrys growth hidden inside the structures of three buildings in Finland.

View Article and Find Full Text PDF

are indoor-dwelling vectors of many arboviruses, including Zika (ZIKV) and chikungunya (CHIKV). The dynamics of these viruses within the mosquito are known to be temperature-dependent, and models that address risk and predictions of the transmission efficiency and patterns typically use meteorological temperature data. These data do not differentiate the temperatures experienced by mosquitoes in different microclimates, such as indoor vs.

View Article and Find Full Text PDF

The quality of indoor air is dependent on a number of factors, including the presence of microorganisms that colonize the building materials. The potential for health risks associated with microbial contamination is a significant concern during the renovation of buildings. The aim of this study was to assess the impact of two reconstruction methods for historic buildings on air quality.

View Article and Find Full Text PDF

Decay of Airborne Bacteria from Cattle Farm Under A-Band Ultraviolet Radiation.

Animals (Basel)

December 2024

Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.

Inspired by the effects of solar or UV radiation on the decay of airborne bacteria during their transport, this study investigated the effect of UVA on the decay of airborne bacteria from cattle houses and analyzed the potential use of UVA to reduce indoor airborne bacteria under laboratory conditions. Airborne bacteria from the cattle source were generated and released into a small-scale test chamber (1.5 m) with different strategies according to the different objectives in decay tests and simulated sterilization tests.

View Article and Find Full Text PDF

Decoding the trajectory of antibiotic resistance genes in saline and alkaline soils: Insights from different fertilization regimes.

Environ Int

December 2024

Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin and Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China. Electronic address:

The soil salinity and alkalinity play an important role in the occurrence and proliferation of antibiotic resistance genes (ARGs). Yet, little is known the underlying mechanism by which soil salinity and alkalinity affect antibiotic resistance evolution. Here we investigated the ARGs variation in soil salinity and alkalinity environments created by different fertilization, and explored the biological mechanisms that salinity and alkalinity alter the evolutionary paradigm of antibiotic resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!