Objective: To evaluate the cardiovascular safety of canagliflozin, a sodium-glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus, in direct comparisons with DPP-4 inhibitors (DPP-4i), GLP-1 receptor agonists (GLP-1RA), or sulfonylureas, as used in routine practice.
Design: Population based retrospective cohort study.
Setting: Nationwide sample of patients with type 2 diabetes from a large de-identified US commercial healthcare database (Optum Clinformatics Datamart).
Participants: Three pairwise 1:1 propensity score matched cohorts of patients with type 2 diabetes 18 years and older who initiated canagliflozin or a comparator non-gliflozin antidiabetic agent (ie, a DPP-4i, a GLP-1RA, or a sulfonylurea) between April 2013 and September 2015.
Main Outcome Measures: The primary outcomes were heart failure admission to hospital and a composite cardiovascular endpoint (comprised of being admitted to hospital for acute myocardial infarction, ischemic stroke, or hemorrhagic stroke). Hazard ratios and 95% confidence intervals were estimated in each propensity score matched cohort controlling for more than 100 baseline characteristics.
Results: During a 30 month period, the hazard ratio for heart failure admission to hospital associated with canagliflozin was 0.70 (95% confidence interval 0.54 to 0.92) versus a DPP-4i (n=17 667 pairs), 0.61 (0.47 to 0.78) versus a GLP-1RA (20 539), and 0.51 (0.38 to 0.67) versus a sulfonylurea (17 354 ). The hazard ratio for the composite cardiovascular endpoint associated with canagliflozin was 0.89 (0.68 to 1.17) versus a DPP-4i, 1.03 (0.79 to 1.35) versus a GLP-1RA, and 0.86 (0.65 to 1.13) versus a sulfonylurea. Results were similar in sensitivity analyses further adjusting for baseline hemoglobin A1c levels and in subgroups of patients with and without prior cardiovascular disease or heart failure.
Conclusions: In this large cohort study, canagliflozin was associated with a lower risk of heart failure admission to hospital and with a similar risk of myocardial infarction or stroke in direct comparisons with three different classes of non-gliflozin diabetes treatment alternatives as used in routine care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5799855 | PMC |
http://dx.doi.org/10.1136/bmj.k119 | DOI Listing |
Expert Opin Drug Metab Toxicol
January 2025
The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
Introduction: Ertugliflozin is the fourth sodium-glucose co-transporter (SGLT2) inhibitor approved by the US FDA in 2017 for the treatment of type 2 diabetes mellitus.
Areas Covered: The main purpose of this review is to evaluate the clinical efficacy and safety of ertugliflozin. We conducted a search of relevant literature on ertugliflozin in the PubMed and Web of Science databases up to 22 October 2024.
Biochim Biophys Acta Mol Basis Dis
January 2025
Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt.
Unlabelled: Nonalcoholic fatty liver disease (NAFLD) is a rising global health problem. The antidiabetic canagliflozin (CANA) has been proposed to ameliorate the metabolic abnormalities in NAFLD.
Aim: This study aimed to explore the possible anti-NAFLD effects of CANA in rats and HepG2 cells, focusing on AMPK/SIRT1-mediated lipophagy.
Expert Rev Endocrinol Metab
January 2025
College of Medicine & Health Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain.
Background: Sodium-glucose cotransporter-2 inhibitors (SGLT2is) are known for their cardiovascular benefits, but their impact on serum uric acid levels is not well understood. This study evaluates the hypouricemic effects of SGLT2is and their potential cardiovascular implications.
Methods: A network meta-analysis was performed, including 56 studies (16,788 participants) contributing data to the meta-analysis.
J Diabetes Metab Disord
June 2025
Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
Introduction: The effects of Sodium-glucose cotransporter-2 (SGLT-2) inhibitors on cardiac outcomes, cardiovascular mortality (CVM), and all-cause mortality (ACM) in type 2 diabetes mellitus (T2DM) patients have been reported heterogeneously in different studies.
Methods: PubMed, Scopus, Embase, Cochrane Library, and Scholar databases were searched with relevant MeSH terms from January 1, 2010, to November 14, 2023. The study used Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
Transl Res
January 2025
Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada. Electronic address:
Renal hedgehog interacting protein (Hhip) activates sodium-glucose cotransporter 2 (Sglt2) expression and promotes tubular senescence in murine diabetic kidney disease (DKD), yet its underlying mechanism(s) are poorly understood. Here we study the effect of the SGLT2 inhibitor, canagliflozin on tubulopathy (fibrosis and apoptosis) in Akita/Hhip-transgenic (Tg) mice with overexpression of Hhip in their renal proximal tubular cells (RPTCs) and its relevant mechanisms. The DKD-tubulopathy with pronounced Sglt2 expression was aggravated in the kidney of Akita/Hhip-Tg cf.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!