Inhibition of Human Papillomavirus Type 16 Infection Using an RNA Aptamer.

Nucleic Acid Ther

Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. , Ciudad de México, México .

Published: April 2018

Human papillomavirus type 16 (HPV16) DNA has been found in ∼50% of cervical tumors worldwide. HPV infection starts with the binding of the virus capsid to heparan sulfate (HS) receptors exposed on the surface of epithelial basal layer keratinocytes. Previously, our group isolated a high-affinity RNA aptamer (Sc5c3) specific for HPV16 L1 virus-like particles (VLPs). In this study, we report the inhibition of HPV16 infection by Sc5c3 in a pseudovirus (PsVs) model. 293TT cells were infected by HPV16 PsVs containing the yellow fluorescent protein (YFP) as reporter gene. Incubation of HPV16 PsVs with Sc5c3 before infection resulted in a dose-dependent decrease in YFP fluorescence, suggesting infection inhibition. Aptamer degradation by RNase A restored PsVs infectivity, supporting the previous observation that Sc5c3 aptamer can inhibit infection. VLP mutants with removed HS binding sites were used in binding assays to elucidate the Sc5c3 blocking mechanism; however, no binding difference was observed between wild-type and mutant VLPs, suggesting that pseudoinfection inhibition relies on mechanisms additional to electrostatic HS binding site interaction. A DNA/RNA Sc5c3 version also inhibited HPV PsVs infection, suggesting that a modified, nuclease-resistant Sc5c3 may be used to inhibit HPV16 infection in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1089/nat.2017.0687DOI Listing

Publication Analysis

Top Keywords

human papillomavirus
8
papillomavirus type
8
infection
8
rna aptamer
8
hpv16 infection
8
hpv16 psvs
8
sc5c3
7
hpv16
6
binding
5
psvs
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!