AI Article Synopsis

  • There are currently no approved medications for treating heart failure with preserved ejection fraction (HFpEF), a condition characterized by issues with heart muscle relaxation rather than pumping ability.* -
  • The study shows that ITF2357 (givinostat), an HDAC inhibitor, effectively improves heart function in mouse models of diastolic dysfunction without affecting blood pressure or causing typical changes associated with heart failure.* -
  • Research indicates that problems with myofibril relaxation in heart muscle cells may contribute to diastolic dysfunction, and HDAC inhibitors could potentially be a new treatment option for HFpEF in humans.*

Article Abstract

There are no approved drugs for the treatment of heart failure with preserved ejection fraction (HFpEF), which is characterized by left ventricular (LV) diastolic dysfunction. We demonstrate that ITF2357 (givinostat), a clinical-stage inhibitor of histone deacetylase (HDAC) catalytic activity, is efficacious in two distinct murine models of diastolic dysfunction with preserved EF. ITF2357 blocked LV diastolic dysfunction due to hypertension in Dahl salt-sensitive (DSS) rats and suppressed aging-induced diastolic dysfunction in normotensive mice. HDAC inhibitor-mediated efficacy was not due to lowering blood pressure or inhibiting cellular and molecular events commonly associated with diastolic dysfunction, including cardiac fibrosis, cardiac hypertrophy, or changes in cardiac titin and myosin isoform expression. Instead, ex vivo studies revealed impairment of cardiac myofibril relaxation as a previously unrecognized, myocyte-autonomous mechanism for diastolic dysfunction, which can be ameliorated by HDAC inhibition. Translating these findings to humans, cardiac myofibrils from patients with diastolic dysfunction and preserved EF also exhibited compromised relaxation. These data suggest that agents such as HDAC inhibitors, which potentiate cardiac myofibril relaxation, hold promise for the treatment of HFpEF in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5908215PMC
http://dx.doi.org/10.1126/scitranslmed.aao0144DOI Listing

Publication Analysis

Top Keywords

diastolic dysfunction
32
histone deacetylase
8
diastolic
8
dysfunction
8
dysfunction preserved
8
cardiac myofibril
8
myofibril relaxation
8
cardiac
6
deacetylase activity
4
activity governs
4

Similar Publications

Myocyte disarray and fibrosis are underlying pathologies of hypertrophic cardiomyopathy (HCM) caused by genetic mutations. However, the extent of their contributions has not been extensively evaluated. In this study, we investigated the effects of genetic mutations on myofiber function and fibrosis patterns in HCM.

View Article and Find Full Text PDF

Background: Diastolic wall strain (DWS), also referred to as right ventricular (RV) dysfunction, is a significant predictor of pulmonary embolism (PE) and heart failure (HF). Rooted in linear elastic theory, DWS reflects decreased wall thinning during diastole, indicating reduced left ventricular (LV) compliance and increased diastolic stiffness. Elevated diastolic stiffness is associated with worse outcomes, particularly in PE and HF with preserved ejection fraction (HFpEF).

View Article and Find Full Text PDF

Objective: ADHD is one of the most common neurodevelopmental disorders, seen in children and adolescents, and is often treated with various pharmacological agents, especially methylphenidate. There are differing opinions in the literature regarding the cardiovascular safety of long-term methylphenidate use. Studies suggest that the drug may increase the risk of hypertension, myocardial infarction, ventricular arrhythmia, sudden cardiac death, cardiomyopathy, heart failure (HF), pulmonary hypertension, and stroke.

View Article and Find Full Text PDF

Predictive value of epicardial adipose tissue volume for early detection of left ventricular dysfunction in patients suspected of coronary artery disease.

Clin Radiol

November 2024

Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China. Electronic address:

Aim: To investigate the relationship between epicardial adipose tissue (EAT) and myocardial strain and the severity of coronary artery disease (CAD), and to evaluate the predictive value of EAT parameters in early left ventricular (LV) diastolic dysfunction.

Materials And Methods: One hundred seventy patients with suspected CAD who underwent both coronary computed tomography angiography and echocardiography were enrolled in 2020. LV global strains were calculated using commercial software.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) frequently coexists with cerebral small vessel disease (CSVD) is common in the aging population, yet the underlying mechanisms are not yet fully understood. Both long-term blood pressure variability (BPV) and plasma neurofilament light (PNFL) were identified as potential biomarkers for AD and CSVD. This study aims to understand the mechanisms of comorbidity between AD and CSVD by investigating the associations among BPV, PNFL, and comorbidity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!