Anthropogenic nutrient inputs increase the N-load in many aquatic systems, leading to eutrophication and potential changes of biological N-retention capacity. In this study, nitrate inputs in a small river were investigated along a gradient of anthropogenic influence. We aimed to determine changes in nitrate load and isotope signatures in the water column and to identify the anthropogenic influence on biological nitrogen assimilation and nitrification or denitrification in sediments. In seasonal sampling campaigns, we analysed dissolved inorganic nitrogen concentrations, and stable isotopes of nitrate. To differentiate rates of nitrate production and consumption in the pristine vs. agricultural river section, intact sediment cores were incubated with N-labelled nitrate. δN values of nitrate in the pristine river section were low, reflecting natural sources, but, as expected, increased with nitrate concentration in all seasons along the gradient. In general, nitrate retention and consumption were higher in the anthropogenically impacted than in the pristine river section, and nitrate consumption exceeded production. In addition to our measurements, modelled results also show that even in a small river, the anthropogenically enhanced consumption capacity is overwhelmed by surplus N-inputs, and nitrate consumption cannot increase in turn with external loads.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10256016.2018.1428580 | DOI Listing |
Food Chem Toxicol
December 2024
Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
Food Chem Toxicol
December 2024
Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), , Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
Food Chem Toxicol
December 2024
Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
Food Chem Toxicol
December 2024
Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), , Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
Food Chem Toxicol
December 2024
Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), , Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!