In this paper, we focus on the controlled growth mechanism of α-FeO nanostructures via the hydrothermal method. The field emission scanning electron microscopy (FESEM) results reveal that at a lower hydrothermal time, the initial nucleation involves the formation of short and thin β-FeOOH nanorods. The subsequent increase in the hydrothermal time leads β-FeOOH to form thicker and longer nanorods. However, high-temperature quenching (HTQ) at 800 °C for 10 min causes the conversion of akaganeite to the hematite phase and activation of hematite by Sn diffusion from a FTO substrate. Sn diffusion from the FTO substrate to the hematite nanostructure was elaborated by X-ray photoelectron spectroscopy (XPS). An α-FeO nanorod photoanode prepared by a hydrothermal reaction for 3 h and HTQ exhibits the highest photocurrent density of 1.04 mA cm. The excellent photoelectrochemical performance could be ascribed to the synergistic effect of the optimum growth of α-FeO nanorod arrays and Sn diffusion. Intensity modulated photovoltage spectroscopy (IMVS) studies revealed that the α-FeO photoanodes prepared at 3 h and HTQ exhibited a long electron lifetime (132.69 ms), and contribute to the enhanced PEC performance. The results confirmed that the controlled growth of the β-FeOOH nanorods, as well as Sn diffusion, played a key role in charge transfer during the photoelectrochemical application. The charge transfer mechanisms in α-FeO nanostructure photoanodes prepared at different hydrothermal times and high-temperature quenching are also investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7dt04536k | DOI Listing |
Materials (Basel)
January 2025
Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece.
Heterojunction formation between BiVO nanomaterials and benchmark semiconductor photocatalysts has been keenly pursued as a promising approach to improve charge transport and charge separation via interfacial electron transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical pollutants. In this work, a heterostructured TiO/Mo-BiVO bilayer photoanode was fabricated by the deposition of a mesoporous TiO overlayer using the benchmark P25 titania catalyst on top of Mo-doped BiVO inverse opal films as the supporting layer, which intrinsically absorbs visible light below 490 nm, while offering improved charge transport. A porous P25/Mo-BiVO bilayer structure was produced from the densification of the inverse opal underlayer after post-thermal annealing, which was evaluated on photocurrent generation in aqueous electrolyte and the photoelectrocatalytic degradation of the refractory anti-inflammatory drug ibuprofen under back-side illumination by visible and UV-Vis light.
View Article and Find Full Text PDFNanotechnology
January 2025
Qingdao University, Ningxia Road 308, Qingdao, Shandong, 266071, CHINA.
Graphitic carbon nitride (g-C3N4) has gained significant attention as a promising nonmetallic semiconductor photocatalyst due to its photochemical stability, favorable electronic properties, and efficient light absorption. Nevertheless, its practical applications are hindered by limitations such as low specific surface area, rapid recombination of photogenerated charge carriers, poor electrical conductivity, and restricted photo-response ranges. This review explores recent advancements in the synthesis, modification and application of g-C3N4 and its nanocomposites with a focus on addressing these challenges.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, California 94132, United States.
Water electrolysis is a green method of storing electrical energy in the chemical bonds of high-energy hydrogen gas (H). However, the anodic oxygen evolution reaction (OER) requires a significant kinetic overpotential, limiting the electrolysis rate. Recently, plasmonic gold nanoparticles (Au NPs) have been introduced to improve charge transfer at the interface between the OER electrocatalysts and the electrolyte under light illumination.
View Article and Find Full Text PDFAnal Chem
January 2025
College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.
The early diagnosis of a disease relies on the reliable identification and quantitation of multiple core biomarkers in real-time point-of-care (POC) testing. To date, most of the multiplex photoelectrochemical (PEC) assays are inaccessible to home healthcare due to cumbersome steps, long testing time, and limited detection efficiency. The rapid and fast-response generation of independent photocurrent for multiple targets is still a great challenge.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Universität Tübingen, Institute of Physical and Theoretical Chemistry, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
The versatile optoelectronic properties of the material class of III-V semiconductors enable the highest performance in photovoltaic and photoelectrochemical solar cells. While a high level of control and understanding with respect to different surface reconstructions of these compounds in gas-phase ambient has been reached, the situation in an electrochemical environment still poses challenges. Here, we therefore have undertaken a computational study of the InP(100) surface in the presence of hydrogen and chlorine, mimicking the contact with a hydrochloric acid-containing electrolyte, aiming at an understanding of ion adsorption and dominant surface reconstructions with respect to applied potential and electrolyte concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!