Chiral Nanoparticles with Full-Color and White CPL Properties Based on Optically Stable Helical Aromatic Imide Enantiomers.

ACS Appl Mater Interfaces

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.

Published: March 2018

Chiral self-assembled organic nanoparticles with circularly polarized luminescence (CPL) properties can be utilized as a new kind of chiral luminescent materials for practical applications. However, no such chiral organic nanoparticles with full-color and white CPL properties have been reported so far. Herein, five pairs of self-assembled chiral nanoparticles based on optically stable helical aromatic amide enantiomers were conveniently obtained. The chiral nanoparticles showed about 200 nm uniform sphere, high fluorescence quantum yields, and large Stokes shifts. Especially, the chiral nanoparticles exhibited both obvious mirror-image circular dichroism signals and full-color CPL properties with luminescence dissymmetry factors of about 10, which were comparable to those of CPL-active quantum dots. Moreover, the chiral organic nanoparticles with white CPL could also be easily achieved using the three-primary-color enantiomers via intermolecular energy resonance transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b00341DOI Listing

Publication Analysis

Top Keywords

chiral nanoparticles
16
cpl properties
16
white cpl
12
organic nanoparticles
12
chiral
8
nanoparticles full-color
8
full-color white
8
based optically
8
optically stable
8
stable helical
8

Similar Publications

Based on the enhanced peroxidase-like activity of carbon dots nanozymes (CDszymes), with a specific oxidation reaction of D-amino acid oxidase catalysing the formation of HO from D-amino acid, an ultrasensitive sensing platform, was constructed for the quantitative detection of D-amino acids in saliva. With the increase of D-amino acids concentration, the blue color of catalytic product gradually deepend, the fluorescence CDszymes gradually quenched, and the temperature gradually increased. Using D-alanine as D-amino acid models, the detection limits of D-alanine in colorimetric/photothermal/fluorescent mode were 0.

View Article and Find Full Text PDF

Great efforts have been made in the last few decades to realize electronic devices based on organic molecules. A possible approach in this field is to exploit the chirality of organic molecules for the development of spintronic devices, an applicative way to implement the chiral-induced spin selectivity (CISS) effect. In this work we exploit enantiopure tetrathiafulvalene (TTF) derivatives as chiral inducers at the nanoscale.

View Article and Find Full Text PDF

The field of chiral nanoparticles is rapidly expanding, yet measuring the chirality of single nano-objects remains a challenging endeavor. Here, we report a technique to detect chiro-optical effects in single plasmonic nanoparticles by means of phase-sensitive polarization-resolved four-wave mixing interferometric microscopy. Beyond conventional circular dichroism, the method is sensitive to the particle polarizability, in amplitude and phase.

View Article and Find Full Text PDF

A Chiral Sensing Platform Based on a Starfish-Shaped AuCu Alloy for Chiral Analysis.

Anal Chem

January 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

Designing alloys with intrinsic chirality for chiral analysis is an interesting subject, since most alloys are achiral. Here, a starfish-shaped AuCu alloy is facilely prepared through simultaneous reduction of chloroauric acid (HAuCl) and copper chloride (CuCl) by l-ascorbic acid (l-AA). The resultant AuCu alloy exhibits fascinating chirality due to the chiral lattice distortion generated in the alloy.

View Article and Find Full Text PDF

() infections are increasingly challenging due to their propensity to form biofilms and low outer membrane permeability, especially in chronically infected patients with thick mucus. exhibits multiple drug resistance mechanisms, making it one of the most significant global public health threats. In this study, we found that moxifloxacin (MXC) and antibacterial peptides (ε-poly-l-lysine, ε-PLL) exhibited a synergistic effect against multidrug-resistant (MDR-).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!