Respiratory and oxidative phosphorylation activity of mitochondria was studied in the course of the adaptation of the heart to haemodynamic overload in rabbit due to aortic valve insufficiency. In the period of developing cardiac hypertrophy, the rate of oxygen consumption in stage 3, i.e. in the stage of ATP formation, and the phosphorylation rate significantly increase. In the period of regression of cardiac hypertrophy, which precedes heart failure, the respiratory and oxidative phosphorylation activity does not significantly change. In a failing heart, the respiratory rate in stage 3 returns to normal and the phosphorylation rate increases in comparison with normal rabbits. The results of the study show that in the myocardium of hypertrophied non-failing as well as failing heart after prolonged haemodynamic overload, the primary function of mitochondria, i.e. energy production is sufficiently preserved.
Download full-text PDF |
Source |
---|
Microb Cell Fact
January 2025
College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
Background: Continuous fermentation offers advantages in improving production efficiency and reducing costs, making it highly competitive for industrial ethanol production. A key requirement for Saccharomyces cerevisiae strains used in this process is their tolerance to high ethanol concentrations, which enables them to adapt to continuous fermentation conditions. To explore how yeast cells respond to varying levels of ethanol stress during fermentation, a two-month continuous fermentation was conducted.
View Article and Find Full Text PDFDrug Metab Dispos
January 2025
Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana. Electronic address:
Environmentally persistent free radicals (EPFRs) are a recently recognized component of particulate matter that cause respiratory and cardiovascular toxicity. The mechanism of EPFR toxicity appears to be related to their ability to generate reactive oxygen species (ROS), causing oxidative damage. EPFRs were shown to affect cytochrome P450 (P450) function, inducing the expression of some forms through the Ah receptor.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China. Electronic address:
Aims: Accumulating studies have demonstrated obstructive sleep apnea (OSA) is strongly associated with metabolic syndrome (MetS) and inflammatory response in adipose tissue. Chronic intermittent hypoxia (CIH) has been proved leading to M1 macrophage polarization that contributes to adipose tissue inflammation, but the molecular mechanism remains unclear. Epigenetic regulation of RNA has been found playing crucial roles in incremental diseases.
View Article and Find Full Text PDFTalanta
January 2025
Enzyme Technology Laboratory, Department of Biochemistry, Genetic and Metabolism Research Group, Pasteur Institute of Iran, 13169-43551, Tehran, Iran. Electronic address:
The emergence of COVID-19 has underscored an urgent demand to develop an innovative, rapid, and reliable diagnostic tool for early detection of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Biosensors present a viable alternative, offering reliability, precision, and cost efficiency that address the limitations of current molecular and serological detection methods, thus facilitating timely identification of COVID-19. In this study, a novel nano-genosenor platform fabricated using advanced nanomaterials based on Ce-metal organic framework (Ce-MOF), dendritic palladium nano-structure (Den-PdNS), and sulfur-doped reduced graphene oxide (S-rGO) for detection of RNA-dependent RNA polymerase (RdRp) SARS-CoV-2 gene targets.
View Article and Find Full Text PDFPulmonology
December 2025
Alma Mater Studiorum, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
Nasal high flow (NHF) therapy is an established form of non invasive respiratory support used in acute and chronic care. Recently, a new high flow nasal cannula with asymmetric prongs was approved for clinical use. The clinical benefits of the new cannula have not yet been defined and no evidence are available on the use of asymmetric NHF support in patient with Chronic Obstructive Pulmonary Disease (COPD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!