CREB (cAMP Response Element Binding protein) is a transcription factor that is overexpressed in primary acute myeloid leukemia (AML) cells and associated with a decreased event-free survival and increased risk of relapse. We recently reported a small molecule inhibitor of CREB, XX-650-23, which inhibits CREB activity in AML cells. Structure-activity relationship analysis for chemical compounds with structures similar to XX-650-23 led to the identification of the anthelminthic drug niclosamide as a potent anti-leukemic agent that suppresses cell viability of AML cell lines and primary AML cells without a significant decrease in colony forming activity of normal bone marrow cells. Niclosamide significantly inhibited CREB function and CREB-mediated gene expression in cells, leading to apoptosis and G1/S cell cycle arrest with reduced phosphorylated CREB levels. CREB knockdown protected cells from niclosamide treatment-mediated cytotoxic effects. Furthermore, treatment with a combination of niclosamide and CREB inhibitor XX-650-23 showed an additive anti-proliferative effect, consistent with the hypothesis that niclosamide and XX-650-23 regulate the same targets or pathways to inhibit proliferation and survival of AML cells. Niclosamide significantly inhibited the progression of disease in AML patient-derived xenograft (PDX) mice, and prolonged survival of PDX mice. Niclosamide also showed synergistic effects with chemotherapy drugs to inhibit AML cell proliferation. While chemotherapy antagonized the cytotoxic potential of niclosamide, pretreatment with niclosamide sensitized cells to chemotherapeutic drugs, cytarabine, daunorubicin, and vincristine. Therefore, our results demonstrate niclosamide as a potential drug to treat AML by inducing apoptosis and cell cycle arrest through inhibition of CREB-dependent pathways in AML cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796975 | PMC |
http://dx.doi.org/10.18632/oncotarget.23794 | DOI Listing |
Haematologica
January 2025
University Clinic Tübingen, Department for Internal Medicine II, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and University Hospital Tübingen.
In acute myeloid leukemia (AML), leukemogenesis depends on cell-intrinsic genetic aberrations and thus, studies on AML require investigations in an in vivo setting as provided by patient derived xenografts (PDX) models. Here we report that, next to leukemic cell characteristics, recipient sex highly influences the outgrowth of AML cells in PDX models, with females being much better repopulated than males in primary as well as secondary transplantation assays. Testosterone may be the more important player since, strikingly, better engraftment was seen in castrated versus control male recipients, while ovariectomy did not significantly impair engraftment in females.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
The objective of the present study was to investigate the role and mechanism of bone marrow microenvironmental cells in regulating the mitochondrial mass of leukemia cells, and to uncover the mechanism of leukemia progression at the metabolic level. A mouse model of acute myeloid leukemia (AML) induced by the overexpression of the MLL-AF9 (MA9) fusion protein was established, and the bone marrow cells of AML mice were transplanted into mitochondrial fluorescence reporter mice expressing the Dendra2 protein (mito-Dendra2 mice). The proportion of Dendra2 cells in bone marrow leukemia cells at different stages of AML was quantified by flow cytometry.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
Background: Venetoclax + azacitidine is a frontline treatment for older adult acute myeloid leukemia (AML) patients and a salvage therapy for relapsed/refractory patients who have been treated with intensive chemotherapy. While this is an important treatment option, many patients fail to achieve complete remission and of those that do, majority relapse. Leukemia stem cells (LSCs) are believed to be responsible for AML relapse and can be targeted through oxidative phosphorylation reduction.
View Article and Find Full Text PDFBiomaterials
January 2025
Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China. Electronic address:
Acute myeloid leukemia (AML) presents significant treatment challenges due to the severe toxicities and limited efficacy of conventional therapies, highlighting the urgency for innovative approaches. Organelle-targeting therapies offer a promising avenue to enhance therapeutic outcomes while minimizing adverse effects. Herein, inspired that primary AML cells are enriched with lysosomes and sensitive to lysosomophilic drugs (e.
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy.
Myeloid sarcoma (MS) is an extramedullary localization of immature granulocyte cells that can occur in association with acute myeloid leukemia (AML). Gastrointestinal involvement is relatively common in MS, but exclusive colonic localization is a rare occurrence. Here, we report on a 53-year-old male patient affected by AML developing a severe abdominal pain caused by intestinal perforation requiring surgical intervention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!