The aim of the present study was to explore the effect of bergamottin, a natural furanocoumarin obtained from grapefruit juice, on the invasiveness of human glioma cells. The results revealed that treatment with bergamottin for 48 h significantly inhibited wound-healing migration and Matrigel invasion of human glioma cells, compared with untreated cells (P<0.05). Bergamottin treatment caused a significant decrease in the expression and secretion of matrix metalloproteinase (MMP)-9 in glioma cells compared with untreated cells (P<0.05). A Rac1-GTP pull-down assay demonstrated that bergamottin-treated glioma cells had a significantly decreased level of active Rac1-GTP compared with untreated cells (P<0.05). However, bergamottin had no significant effect on cell division cycle 42 activity. Expression of constitutively activated Rac1 almost completely restored the migration and invasion of bergamottin-treated glioma cells. In addition, bergamottin-induced downregulation of MMP-9 was prevented by exogenous activated Rac1. The results of the present study demonstrated that bergamottin exhibits anti-invasive activity in human glioma cells through the inactivation of Rac1 and downregulation of MMP-9.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778920 | PMC |
http://dx.doi.org/10.3892/ol.2017.7641 | DOI Listing |
J Exp Clin Cancer Res
January 2025
School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.
View Article and Find Full Text PDFActa Neurochir (Wien)
January 2025
Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany.
In recent years, it has been increasingly recognized that tumor growth relies not only on support from the surrounding microenvironment but also on the tumors capacity to adapt to - and actively manipulate - its niche. While targeting angiogenesis and modulating the local immune environment have been explored as therapeutic approaches, these strategies have yet to yield effective treatments for brain tumors and remain under refinement. More recently, the nervous system itself has been explored as a critical environmental support for cancer, with extensive neuro-tumoral interactions observed both intracranially and in extracranial sites containing neural components.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
Glioma is characterized by high heterogeneity and poor prognosis. Attempts have been made to understand its diversity in both genetic expressions and radiomic characteristics, while few integrated the two omics in predicting survival of glioma. This study was intended to investigate the connection between glioma imaging and genome, and examine its predictive value in glioma mortality risk and tumor immune microenvironment (TIME).
View Article and Find Full Text PDFActa Neuropathol
January 2025
Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
Gliomas are the most common brain tumor type in children and adolescents. To date, diagnosis and therapy monitoring for these tumors rely on magnetic resonance imaging (MRI) and histopathological as well as molecular analyses of tumor tissue. Recently, liquid biopsies (LB) have emerged as promising tool for diagnosis and longitudinal tumor assessment potentially allowing for a more precise therapeutic management.
View Article and Find Full Text PDFClin Chem
January 2025
Broad Institute of MIT and Harvard, Cambridge, MA, United States.
Background: Minimally invasive molecular profiling using cell-free DNA (cfDNA) is increasingly important to the management of cancer patients; however, low sensitivity remains a major limitation, particularly for brain tumor patients. Transiently attenuating cfDNA clearance from the body-thereby, allowing more cfDNA to be sampled-has been proposed to improve the performance of liquid biopsy diagnostics. However, there is a paucity of clinical data on the effect of higher cfDNA recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!