Cytoplasmic polyadenylation element-binding protein-4 (CPEB4) is involved in several biological processes that are associated with cancer progression. However, it remains unknown whether CPEB4 expression levels are associated with head and neck squamous cell carcinoma (HNSCC). The aim of the present study was to explore the potential function of CPEB4 in HNSCC. The expression of CPEB4 was analyzed in HNSCC from six Gene Expression Omnibus (GEO) datasets. Immunohistochemical staining was conducted to examine CPEB4 protein levels in an HNSCC tissue microarray (TMA). According to the GEO dataset analyses, gene expression was downregulated in HNSCC compared with normal samples (P<0.05). Notably, a statistical difference was observed between different tumor grades (P<0.05). Furthermore, the methylation of the gene in HNSCC was significantly increased compared with that observed in normal samples (P<0.01). The outcome from the TMA demonstrated that CPEB4 protein expression in human HNSCC tumors was significantly decreased compared with normal samples (P<0.05). In addition, the expression of CPEB4 protein was negatively associated with histological grades of HNSCC (P<0.05). The results from the present study suggested that CPEB4 may function as a tumor suppressor gene in HNSCC, which identifies the potential value of CPEB4 in predicting prognosis of HNSCC. Hypermethylation of the gene may be responsible for the downregulation of CPEB4 expression in HNSCC and result in tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778832 | PMC |
http://dx.doi.org/10.3892/ol.2017.7661 | DOI Listing |
Nat Commun
January 2025
Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution.
View Article and Find Full Text PDFBiochem Genet
December 2024
Department of Oncology, The Affiliated Hospital of Jianghan University, WuHan City No.6 Hospital, Wuhan, 430015, China.
Unlabelled: Gastric cancer is associated with high morbidity and mortality rates and seriously threatens human life. Our research aimed to explore the effects of poly (A) binding protein cytoplasmic 1 (PABPC1) on gastric cancer cells and elucidate the underlying mechanisms.
Methods: PABPC1 levels in gastric cancer cell lines were assessed by western blotting and RT-qPCR.
Int J Biol Macromol
December 2024
Animal-derived Food Safety Innovation Team, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China. Electronic address:
Japanese encephalitis caused by Japanese encephalitis virus (JEV) infection leads to the central nervous system disorder in human and swine. Viruses utilize the host protein synthesis mechanisms to efficiently translate their RNAs. Herein, we demonstrated that the host transcription factor SOX10 downregulated an RNA-binding protein heterogeneous nuclear ribonucleoprotein H (HNRNPH1) during JEV infection.
View Article and Find Full Text PDFCells
November 2024
Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049 Madrid, Spain.
T-cell intracellular antigen 1 (TIA1) is an RNA-binding protein (RBP) that plays a multifunctional role in RNA metabolism. TIA1 has three RNA-Recognition Motifs (RRMs) and a prion-like carboxyl C-terminal domain (LCD) with intrinsically disordered regions (IDR) implicated in the dynamics (i.e.
View Article and Find Full Text PDFNature
December 2024
Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!