NAD(P)H quinone oxidoreductase 1 (NQO1)-dependent antitumor drugs such as β-lapachone (β-lap) are attractive candidates for cancer chemotherapy because several tumors exhibit higher expression of NQO1 than adjacent tissues. Although the association between NQO1 and β-lap has been elucidated, the effects of a NQO1-inducer and β-lap used in combination remain to be clarified. It has previously been reported that melanoma cell lines have detectable levels of NQO1 expression and are sensitive to NQO1-dependent drugs such as 17-allylamino-17-demethoxygeldanamycin. The present study was conducted to investigate the involvement of NQO1 in β-lap-mediated toxicity and the utility of combination treatment with a NQO1-inducer and β-lap in malignant melanoma cell lines. Decreased expression or inhibition of NQO1 caused these cell lines to become less sensitive to β-lap, indicating a requirement of NQO1 activity for β-lap-mediated toxicity. Of note was that carnosic acid (CA), a compound extracted from rosemary, was able to induce further expression of NQO1 through NF-E2 related factor 2 (NRF2) stabilization, thus significantly enhancing the cytotoxicity of β-lap in all of the melanoma cell lines tested. Taken together, the data presented in the current study indicated that the NRF2-NQO1 axis may have potential value as a therapeutic target in malignant melanoma to improve the rate of clinical response to NQO1-dependent antitumor drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777343PMC
http://dx.doi.org/10.3892/ol.2017.7618DOI Listing

Publication Analysis

Top Keywords

cell lines
20
melanoma cell
16
carnosic acid
8
nadph quinone
8
quinone oxidoreductase
8
nqo1-dependent antitumor
8
antitumor drugs
8
expression nqo1
8
nqo1-inducer β-lap
8
β-lap-mediated toxicity
8

Similar Publications

Background Aims: Hepatitis B virus (HBV) leads to severe liver diseases, such as cirrhosis and hepatocellular carcinoma. Identification of host factors that regulate HBV replication can provide new therapeutic targets. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV entry receptor has enabled the establishment of hepatic cell lines for analyzing HBV infection and propagation.

View Article and Find Full Text PDF

Corneal Stromal Stem Cell-Derived Extracellular Vesicles Attenuate ANGPTL7 Expression in the Human Trabecular Meshwork.

Transl Vis Sci Technol

January 2025

Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

Purpose: Regulating intraocular pressure (IOP), mainly via the trabecular meshwork (TM), is critical in developing glaucoma. Whereas current treatments aim to lower IOP, directly targeting the dysfunctional TM tissue for therapeutic intervention has proven challenging. In our study, we utilized Dexamethasone (Dex)-treated TM cells as a model to investigate how extracellular vesicles (EVs) from immortalized corneal stromal stem cells (imCSSCs) could influence ANGPTL7 and MYOC genes expression within TM cells.

View Article and Find Full Text PDF

Purpose: Although mechanical injury to the cornea (e.g. chronic eye rubbing) is a known risk factor for keratoconus progression, how it contributes to loss of corneal integrity is not known.

View Article and Find Full Text PDF

Molecular mechanism of ligand recognition and activation of lysophosphatidic acid receptor LPAR6.

Proc Natl Acad Sci U S A

January 2025

Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.

Lysophosphatidic acid (LPA) exerts its physiological roles through the endothelialdifferentiation gene (EDG) family LPA receptors (LPAR1-3) or the non-EDG family LPA receptors (LPAR4-6). LPAR6 plays crucial roles in hair loss and cancer progression, yet its structural information is very limited. Here, we report the cryoelectron microscopy structure of LPA-bound human LPAR6 in complex with a mini G or G protein.

View Article and Find Full Text PDF

Complement C3 of tumor-derived extracellular vesicles promotes metastasis of RCC via recruitment of immunosuppressive myeloid cells.

Proc Natl Acad Sci U S A

January 2025

Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China.

Heterogeneous roles of complement C3 have been implicated in tumor metastasis and are highly context dependent. However, the underlying mechanisms linking C3 to tumor metastasis remain elusive in renal cell carcinoma (RCC). Here, we demonstrate that C3 of RCC cell-derived extracellular vesicles (EVs) contributes to metastasis via polarizing tumor-associated macrophages (TAMs) into the immunosuppressive phenotype and recruiting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!