Gastric cancer (GC) is the fifth most common malignancy and the third leading cause of cancer-associated mortality worldwide. Therefore, there is a requirement to identify sufficiently sensitive biomarkers for GC. Genome-wide screening of transcriptome dysregulation among cancerous and normal tissues may provide insights into the underlying molecular mechanisms of GC initiation and progression. At present, high-throughput sequencing techniques have begun to innovate biomedical studies. The RNA-seq method has become an advanced approach in medical studies; it is capable of the accurate detection of gene expression levels. The present study used RNA-seq to evaluate the transcriptional changes between tumor and matched normal samples, and these changes were confirmed by differentially expressed genes in larger samples using the results of sequencing. In total, the upregulation of 28 mRNAs and downregulation of 22 mRNAs between cancerous and normal tissue samples were identified. Subsequently, five differentially expressed genes were selected to verify in large samples and cadherin-1 (CDH1) was selected to detect protein expression levels. The results revealed that CDH1, cyclooxygenase-2 and matrix metalloproteinase genes had significantly higher expression levels, whereas the expression levels of dermatopontin and transforming growth factor β receptor 2 were decreased in GC samples. In particular, CDH1 demonstrated a 36-fold higher expression level in cancer tissues. The western blotting results also revealed high CDH1 expression levels in the validation cohorts. Furthermore, these genes are highly enriched in certain gene ontology categories, including the digestive system process, secretion and digestion. The present study provided a preliminary survey of the transcriptome of Chinese patients with GC, which may improve the detection of aberrant gene expression in GC and the understanding of the mechanisms of tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777123 | PMC |
http://dx.doi.org/10.3892/ol.2017.7548 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!