AI Article Synopsis

  • The study investigates the role of CXCL10 in cardia re-transplantation, particularly how it influences donor-reactive T cells and graft rejection.
  • Using a rat model, researchers compared the effects of re-transplantation with and without treatment from CXCL10 antibodies on graft survival and inflammatory response.
  • Findings revealed that CXCL10 levels increased during the re-transplantation process, leading to shorter graft survival and heightened inflammatory cell infiltration, highlighting its significance in promoting acute rejection mediated by memory T cells.

Article Abstract

The interaction of chemokine (C-X-C motif) ligand 10 (CXCL10) with its receptor (CXCR3) is a critical process in recruiting donor reactive T cells to a graft and alloantigen-specific memory T (Tm) cells exert a principal function in promoting graft dysfunction during accelerated cardiac rejection. However, whether CXCL10 chemokine exerts any effects on acute accelerated rejection mediated by CD8 Tm cells in a re-transplant model has remained elusive. The present study established a cardiac transplant model by advanced microsurgery technology and improved organ storage. A novel rat model of cardiac re-transplantation was established at 40 days following primary heart transplant. The experiment included two parts, and when models were established, the rats were divided into two groups: Primary cardiac transplant (HTx) and re-transplantation without treatment (HRTx). In part 1, recipients from part 2, including re-transplantation without treatment (HRTx+NS) and re-transplantation treated with anti-CXCL10 antibodies (500 µg every other day by intraperitoneal injection; HRTx+CXCL10 Abs group). The graft survival time was observed and graft infiltration by inflammatory cells was assessed via histology of cardiac graft sections; in addition, the gene expression and the serum concentration of CXCL10 in each group was assessed. Indexes such as rejection-associated cytokines were assayed by reverse-transcription quantitative PCR and ELISA kits, and flow cytometry of splenocytes was used to detect Tm cells in the re-transplantation groups. The results demonstrated that level of CXCL10 was significantly increased and the graft mean survival time was shortened accompanied with aggravated lymphocyte cell infiltration in the HRTx group when compared that in the HTx group; in addition, the serum levels and mRNA expression of interleukin (IL)-2 and interferon (IFN)-γ were increased, while transforming growth factor (TGF)-β was decreased in the HRTx group. Furthermore, neutralization of CXCL10 prolonged the graft mean survival time and delayed accelerated rejection. Compared with that in the HRTx+NS group, serum levels and graft tissue mRNA expression of IFN-γ and IL-2 were decreased in the HRTx+CXCL10 Abs group, while TGF-β mRNA was significantly increased but the serum concentration was not significantly affected. In addition, there was no difference in IL-10 between the two groups, while delayed accelerated rejection paralleled with inflammatory cell infiltration decreased and the proliferation and differentiation of CD8 Tm cells in secondary lymphoid organs were reduced in the HRTx+CXCL10 Abs group vs. those in the HRTx+NS group. The present study demonstrated that CXCL10 had a crucial role in cardiac transplantation and re-transplantation, and that treatment with CXCL10 antibodies delays accelerated acute rejection mediated by Tm cells in a rat model of cardiac re-transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776636PMC
http://dx.doi.org/10.3892/etm.2017.5585DOI Listing

Publication Analysis

Top Keywords

cd8 cells
12
accelerated rejection
12
re-transplantation treatment
12
hrtx+cxcl10 abs
12
abs group
12
graft survival
12
survival time
12
graft
9
group
9
c-x-c motif
8

Similar Publications

Bioinformatics Analysis of Programmed Death-1-Trastuzumab Resistance Regulatory Networks in Breast Cancer Cells.

Asian Pac J Cancer Prev

January 2025

Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia.

Objective: Programmed cell death-1 (PD-1, encoded by PDCD1) regulatory network participates in glioblastoma multiforme development. However, such a network in trastuzumab-resistant human epidermal growth factor receptor 2-positive (HER2+) breast cancer remains to be determined. Accordingly, this study was aimed to explore the PD-1 regulatory network responsible for the resistance of breast cancer cells to trastuzumab through a bioinformatics approach.

View Article and Find Full Text PDF

Objective: The progress made in cancer immunology has led to the development of innovative therapeutic strategies. However, despite these advances, the superficial characteristics of immune cells have been frequently overlooked: This oversight may be attributed to a limited understanding of the intricate relationships between immune cells and their microenvironment. This study seeks to address this limitation by comprehensively examining cell size and granularity in breast cancer (BC) patients and healthy donors (HD).

View Article and Find Full Text PDF

tRNA m1A modification regulates cholesterol biosynthesis to promote antitumor immunity of CD8+ T cells.

J Exp Med

March 2025

Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Activation of CD8+ T cells necessitates rapid metabolic reprogramming to fulfill the substantial biosynthetic demands of effector functions. However, the posttranscriptional mechanisms underpinning this process remain obscure. The transfer RNA (tRNA) N1-methyladenine (m1A) modification, essential for tRNA stability and protein translation, has an undefined physiological function in CD8+ T cells, particularly in antitumor responses.

View Article and Find Full Text PDF

Glia Modulates Immune Responses in the Retina Through Distinct MHC Pathways.

Glia

January 2025

Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.

Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia.

View Article and Find Full Text PDF

Cancer is one of the leading causes of death worldwide. In recent years, immune checkpoint inhibitor therapies, in addition to standard immuno- or chemotherapy and surgical approaches, have massively improved the outcome for cancer patients. However, these therapies have their limitations and improved strategies, including access to reliable cancer vaccines, are needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!