The present study aimed to investigate the effect of pentraxin 3 (PTX3) on the regulation of proliferation and apoptosis in human glomerular mesangial cells (HMCs). Small interfering (si)RNA was designed and synthesized to inhibit the expression of endogenous PTX3, and the effects on the proliferation and apoptosis of HMCs were detected by flow cytometry and an MTT assay. Western blot analysis was used to detect the activation of mitogen-activated protein kinase (MAPK) proteins in HMCs with PTX3 knockdown. Three siRNAs targeting PTX3 were individually transfected into HMCs for 48 h, and reverse-transcription quantitative PCR demonstrated that the relative mRNA expression of PTX3 was significantly decreased in all groups by up to 79.62% of that in the control group (P<0.05). Following transfection with PTX3-siRNA, the viability of an HMC line was significantly decreased in comparison with that of a control group transfected with scrambled siRNA. However, PTX3-siRNA did not significantly effect early and late apoptotic cell populations in HMCs compared with those in the control. Endogenous PTX3 interference was found to significantly decrease p38 MAPK, extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase phosphorylation. In conclusion, silencing of PTX3, inhibited the proliferation of HMCs via MAPK pathways, but exerted no effect on the apoptosis of HMCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774436PMC
http://dx.doi.org/10.3892/etm.2017.5521DOI Listing

Publication Analysis

Top Keywords

proliferation apoptosis
12
ptx3
6
ptx3 serum
4
serum induces
4
induces renal
4
renal mesangial
4
mesangial cell
4
cell proliferation
4
apoptosis study
4
study aimed
4

Similar Publications

Mycophenolate mofetil: an update on its mechanism of action and effect on lymphoid tissue.

Front Immunol

January 2025

Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.

Introduction: Mycophenolate mofetil (MMF) is an immunosuppressive drug administered in the management of both autoimmune diseases and organ transplantation. The main aims of the study were: (a) to obtain information regarding the safety of using MMF in respect of its effect on normal T and B cells in lymphoid tissues; (b) to investigate whether the generation of inducible Foxp3-expressing regulatory T cells (Treg) might constitute additional mechanisms underlying the immunosuppressive properties of MMF.

Methods: The effect of MMF ( studies) and its active metabolite, mycophenolic acid, ( studies) on murine CD4 and CD8 T cells as well as B cells was determined, regarding: (a) absolute count, proliferation and apoptosis of these cells ( studies); (b) absolute count of these cells in the head and neck lymph nodes, mesenteric lymph nodes and the spleen ( studies).

View Article and Find Full Text PDF

Objective: Minor ginsenosides have demonstrated promising anticancer effects in previous reports. Total minor ginsenosides (TMG) were obtained through the fermentation of major ginsenosides with , and potential anticancer effects of TMGs on the mouse colon cancer cell line CT26.WT, and , were investigated.

View Article and Find Full Text PDF

Introduction: Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer to treat. While previous studies have demonstrated that ginsenoside Rh2 induces apoptosis in TNBC cells, the specific molecular targets and underlying mechanisms remain poorly understood. This study aims to uncover the molecular mechanisms through which ginsenoside Rh2 regulates apoptosis and proliferation in TNBC, offering new insights into its therapeutic potential.

View Article and Find Full Text PDF

Introduction: Maternal infections such as chorioamnionitis could impact fetal lung development by altering cell proliferation and apoptosis. Chorioamnionitis favors the multiple pleiotropic cytokines production such as LIF (leukemia inhibitory factor) and an inflammation-related protein p53. The cytokine production can lead to lung tissue damage and lung disease development.

View Article and Find Full Text PDF

Bullatine A suppresses glioma cell growth by targeting SIRT6.

Heliyon

January 2025

Department of Cerebrovascular Disease, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China.

Gliomas are the most common primary tumors of the nervous system, which is generally treated using adjuvant chemotherapy following surgical resection. However, patient survival time is still short, and there is currently no successful treatment for highly malignant gliomas. Bullatine A (BLA) is a diterpenoid alkaloid of the genus Aconitum which antirheumatic and anti-inflammatory pharmacological properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!