Bacteria and archaea possess adaptive immunity against foreign genetic materials through clustered regularly interspaced short palindromic repeat (CRISPR) systems. The discovery of this intriguing bacterial system heralded a revolutionary change in the field of medical science. The CRISPR and CRISPR-associated protein 9 (Cas9) based molecular mechanism has been applied to genome editing. This CRISPR-Cas9 technique is now able to mediate precise genetic corrections or disruptions in and environments. The accuracy and versatility of CRISPR-Cas have been capitalized upon in biological and medical research and bring new hope to cancer research. Cancer involves complex alterations and multiple mutations, translocations and chromosomal losses and gains. The ability to identify and correct such mutations is an important goal in cancer treatment. In the context of this complex cancer genomic landscape, there is a need for a simple and flexible genetic tool that can easily identify functional cancer driver genes within a comparatively short time. The CRISPR-Cas system shows promising potential for modeling, repairing and correcting genetic events in different types of cancer. This article reviews the concept of CRISPR-Cas, its application and related advantages in oncology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802696PMC
http://dx.doi.org/10.1177/1758834018755089DOI Listing

Publication Analysis

Top Keywords

cancer
7
genetic
5
crispr-cas9 promising
4
promising genetic
4
genetic engineering
4
engineering approach
4
approach cancer
4
cancer bacteria
4
bacteria archaea
4
archaea possess
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!