The extreme rarity of asexual vertebrates in nature is generally explained by genomic decay due to absence of meiotic recombination, thus leading to extinction of such lineages. We explore features of a vertebrate asexual genome, the Amazon molly, Poecilia formosa, and find few signs of genetic degeneration but unique genetic variability and ongoing evolution. We uncovered a substantial clonal polymorphism and, as a conserved feature from its interspecific hybrid origin, a 10-fold higher heterozygosity than in the sexual parental species. These characteristics seem to be a principal reason for the unpredicted fitness of this asexual vertebrate. Our data suggest that asexual vertebrate lineages are scarce not because they are at a disadvantage, but because the genomic combinations required to bypass meiosis and to make up a functioning hybrid genome are rarely met in nature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5866774PMC
http://dx.doi.org/10.1038/s41559-018-0473-yDOI Listing

Publication Analysis

Top Keywords

clonal polymorphism
8
genome amazon
8
amazon molly
8
asexual vertebrate
8
polymorphism high
4
high heterozygosity
4
heterozygosity celibate
4
celibate genome
4
molly extreme
4
extreme rarity
4

Similar Publications

The surveillance of mobile genetic elements facilitating the spread of antimicrobial resistance genes has been challenging. Here, we tracked both clonal and plasmid transmission in colistin- and carbapenem-resistant using short- and long-read sequencing technologies. We observed three clonal transmissions, all containing Incompatibility group (Inc) L plasmids and New Delhi metallo-beta-lactamase , although not co-located on the same plasmid.

View Article and Find Full Text PDF

Genomic selection is a widely used quantitative method of determining the genetic value of an individual from genomic information and phenotypic data. In this study, we used a large, multi-year training population of 3248 individuals from the University of Florida strawberry (Fragaria × ananassa Duchesne) breeding program. We coupled this training population with a test population of 1460 individuals derived from 20 biparental families.

View Article and Find Full Text PDF

Trichophyton indotineae, first identified in India, has increasingly been reported in Asia, the Middle East, Europe, and recently in the USA. The global spread of terbinafine-resistant T. indotineae underscores the urgency of the issue.

View Article and Find Full Text PDF

Post-transplant lymphoproliferative disorders (PTLD) and lymphomas in immunocompromised individuals represent significant clinical challenges, with a limited understanding of their pathogenesis. We investigated a PTLD cohort (n = 50) consisting of 'early lesions' (infectious mononucleosis-like PTLD, plasmacytic and follicular hyperplasias), polymorphic PTLD and post-transplant diffuse large B-cell lymphomas (PT-DLBCL). The study also included 15 DLBCL with autoimmune/immunocompromised backgrounds (IS-DLBCL) and 14 DLBCL, not otherwise specified (DLBCL, NOS), as control.

View Article and Find Full Text PDF

Insights into Within-Host Evolution and Dynamics of Oral and Intestinal Streptococci Unveil Niche Adaptation.

Int J Mol Sci

December 2024

Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, 52074 Aachen, Germany.

The oral-gut axis is a complex system linking the oral cavity and gastrointestinal tract, impacting host health and microbial composition. This study investigates genetic changes and adaptive mechanisms employed by streptococci-one of the few genera capable of colonizing oral and intestinal niches-within the same individual. We conducted whole-genome sequencing (WGS) on 218 streptococcal isolates from saliva and fecal samples of 14 inflammatory bowel disease (IBD) patients and 12 healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!