Environmental pollution by alkaline salts, such as NaCO, is a permanent problem in agriculture. Here, we examined the putative role of jasmonic acid (JA) in improving NaCO-stress tolerance in maize seedlings. Pretreatment of maize seedlings with JA was found to significantly mitigate the toxic effects of excessive NaCO on photosynthesis- and plant growth-related parameters. The JA-induced improved tolerance could be attributed to decreased Na uptake and NaCO-induced oxidative damage by lowering the accumulation of reactive oxygen species and malondialdehyde. JA counteracted the salt-induced increase in proline and glutathione content, and significantly improved ascorbic acid content and redox status. The major antioxidant enzyme activities were largely stimulated by JA pretreatment in maize plants exposed to excessive alkaline salts. Additionally, increased activities of glyoxalases I and II were correlated with reduced levels of methylglyoxal in JA-pretreated alkaline-stressed maize plants. These results indicated that modifying the endogenous Na and K contents by JA pretreatment improved alkaline tolerance in maize plants by inhibiting Na uptake and regulating the antioxidant and glyoxalase systems, thereby demonstrating the important role of JA in mitigating heavy metal toxicity. Our findings may be useful in the development of alkali stress tolerant crops by genetic engineering of JA biosynthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809373 | PMC |
http://dx.doi.org/10.1038/s41598-018-21097-3 | DOI Listing |
Microb Cell Fact
January 2025
Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
Background: In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.
Results: Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.
Microsc Res Tech
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
Green synthesis of nanoparticles (NPs) is preferred for its affordability and environmentally friendly approach. This study explored the synthesis and characterization of silver NPs (AgNPs) and examined their impact on the growth of Zea mays, both alone and in combination with nickel chloride (NiCl). A methanolic leaf extract was combined with silver nitrate to synthesize AgNPs.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Resources and Environment, Yunnan Agricultural University, Kunming, China.
BMC Plant Biol
December 2024
Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
Zea mays L. (Maize) is one of the most crucial world's crops, for their nutritional values, however, the water scarcity and consequent soil salinization are the major challenges that limit the growth and productivity of this plant, particularly in the semi-arid regions in Egypt. Recently, biopriming has been recognized as one of the most efficient natural-ecofriendly approaches to mitigate the abiotic salt stress on plants.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Saha's Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India.
The present study demonstrates the applicability of non-destructive and rapid spectroscopic techniques, specifically laser-induced fluorescence, ultraviolet-visible, and confocal micro-Raman spectroscopy, as non-invasive, eco-friendly, and robust multi-compound analytical methods for assessing biochemical changes in maize seedling leaves resulting from the treatment of aluminium oxide nanoparticles. The recorded fluorescence spectrum of the leaves shows that the treatment of different concentration of aluminium oxide nanoparticles decreases the chlorophyll content as observed by the increase in fluorescence emission intensity ratio (FIR = I/I). The analysis of ultraviolet-visible absorption measurements reveals that the amount of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid decrease for treated plants with respect to untreated seedlings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!