Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A microfluidic method with front-face fluorometric detection was developed for the determination of total inorganic iodine in drinking water. A polydimethylsiloxane (PDMS) microfluidic device was employed in conjunction with the Sandell-Kolthoff reaction, in which iodide catalyzed the redox reaction between Ce(IV) and As(III). Direct alignment of an optical fiber attached to a spectrofluorometer was used as a convenient detector for remote front-face fluorometric detection. Trace inorganic iodine (IO and I) present naturally in drinking water was measured by on-line conversion of iodate to iodide for determination of total inorganic iodine. On-line conversion efficiency of iodate to iodide using the microfluidic device was investigated. Excellent conversion efficiency of 93 - 103% (%RSD = 1.6 - 11%) was obtained. Inorganic iodine concentrations in drinking water samples were measured, and the results obtained were in good agreement with those obtained by an ICP-MS method. Spiked sample recoveries were in the range of 86%(±5) - 128%(±8) (n = 12). Interference of various anions and cations were investigated with tolerance limit concentrations ranging from 10 to 2.5 M depending on the type of ions. The developed method is simple and convenient, and it is a green method for iodine analysis, as it greatly reduces the amount of toxic reagent consumed with reagent volumes in the microfluidic scale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2116/analsci.34.161 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!