There has been considerable discussion of the speed performance of HPLC separation, especially regarding the relationship between theoretical plates and hold-up time. The fundamental discussion focuses on the optimal velocity, u, which gives a minimal height equivalent to a theoretical plate of the van Deemter plot. On the other hand, Desmet's method, using the kinetic performance limit (KPL), calculates the highest performance with a constant pressure drop, without focusing solely on the optimal velocity. In this paper, a precise method based on the KPL is proposed, to understand how increasing pressure enhances both theoretical plates and hold-up time. A three-dimensional representation method that combines the pressure drop with two axes of time and theoretical plates will be useful for discussing the effect of pressure in pressure-driven chromatography. Using three dimensions, the methods based on u and the KPL can be combined, because u can be visualized three-dimensionally, including the neighbor of u; and the question of whether the KPL is an asymptotic or effective limit can be investigated. Three performances of high resolution, high speed, and low pressure can be understood on different packing supports at a glance.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.34.137DOI Listing

Publication Analysis

Top Keywords

theoretical plates
16
three-dimensional representation
8
representation method
8
plates hold-up
8
hold-up time
8
optimal velocity
8
pressure drop
8
based kpl
8
pressure
6
theoretical
5

Similar Publications

Visual examination of nails can reflect human health status. Diseases such as nutritive imbalances and skin diseases can be identified by looking at the colors around the plate part of the nails. We present the AI-based NAILS method to detect fingernails through segmentation and labeling.

View Article and Find Full Text PDF

An important technical task is to develop methods for recording the phase transitions of water to ice. At present, many sensors based on various types of acoustic waves are suggested for solving this challenge. This paper focuses on the theoretical and experimental study of the effect of water-to-ice phase transition on the properties of Lamb and quasi shear horizontal (QSH) acoustic waves of a higher order propagating in different directions in piezoelectric plates with strong anisotropy.

View Article and Find Full Text PDF

Carbon fiber-reinforced polymer (CFRP) composites are widely used in aviation thermal insulation layers due to their high strength-to-weight ratio and excellent high-temperature performance. However, challenges remain regarding their structural integrity and durability under extreme conditions. This study first employed finite element simulation to model the damage evolution of CFRP laminated plates under axial tensile loads and their thermal decomposition behavior in high-temperature environments, providing a theoretical reference.

View Article and Find Full Text PDF

: The ankle joint is among the most vulnerable areas for injuries during daily activities and sports. This study focuses on individuals with chronic ankle instability (CAI), comparing the biomechanical characteristics of the lower limb during side-step cutting under various conditions. The aim is to analyze the impact of kinesiology tape (KT) length on the biomechanical properties of the lower limb during side-step cutting, thereby providing theoretical support and practical guidance for protective measures against lower-limb sports injuries.

View Article and Find Full Text PDF
Article Synopsis
  • All-solid-state lithium metal batteries are promising for high energy density and safety, but issues like voids at the anode/electrolyte interface during lithium stripping can hurt stability.
  • Stack pressure and operating temperature can induce creep deformation in lithium metal, potentially improving interfacial issues caused by these voids, although understanding of these effects is still lacking.
  • A new coupled model (EDMP-VE) has been developed to study the influence of pressure and temperature on void evolution, showing that higher conditions can enhance void healing and stabilize interfaces by reducing void expansion and promoting filling.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!