Background: Liver regeneration involves hyperplasia and hypertrophy of hepatic cells. The capacity of macroscopic liver tissue to regenerate in ectopic sites is unknown. We aim to develop a novel in vivo model of ectopic liver survivability and regeneration and assess its functionality.

Methods: Adult male Sprague-Dawley rats (n = 23) were divided into four groups: (1) single-stage (SS) group, wedge liver resection was performed, and the parenchyma was directly implanted into the omentum; (2) double-stage (DS) group, omentum pedicle was transposed over the left hepatic lobe followed by wedge liver resection along with omental flap; (3) Biogel + DS group, rats received intraperitoneal injection of inert polymer particles prior to DS; (4) Biogel + DS + portal vein ligation (PVL) group, Biogel + DS rats underwent subsequent PVL. Hepatobiliary iminodiacetic acid scintigraphy assessed bile excretion from ectopic hepatic implants.

Results: Histologically, the scores of necrosis (P < 0.001) and fibrosis (P = 0.004) were significantly improved in rats undergoing DS procedure (groups 2, 3, and 4) compared with the SS group. Biogel rats (Biogel + DS and Biogel + DS + PVL) demonstrated statistically increased scores of bile duct neoformation (P = 0.002) compared to those without the particles (SS and DS). Scintigraphy demonstrated similar uptake of radiotracer by ectopic hepatic implants in groups 2, 3, and 4.

Conclusions: Omental transposition provided adequate microcirculation for proliferation of ectopic hepatic cells after liver resection. Inert polymers enhanced the regeneration by promoting differentiation of new bile ducts. The ectopic hepatic implants showed preserved function on scintigraphy. This model provides insights into the capacity of liver parenchyma to regenerate in ectopic sites and the potential as therapeutic target for cell therapy in end-stage liver disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2017.11.032DOI Listing

Publication Analysis

Top Keywords

ectopic liver
8
liver regeneration
8
wedge liver
8
liver resection
8
liver
6
autogenous hepatic
4
hepatic tissue
4
tissue transplantation
4
transplantation omentum
4
omentum novel
4

Similar Publications

Detection of Hepatitis C Virus Infection from Patient Sera in Cell Culture Using Semi-Automated Image Analysis.

Viruses

November 2024

Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, 69120 Heidelberg, Germany.

The study of hepatitis C virus (HCV) replication in cell culture is mainly based on cloned viral isolates requiring adaptation for efficient replication in Huh7 hepatoma cells. The analysis of wild-type (WT) isolates was enabled by the expression of SEC14L2 and by inhibitors targeting deleterious host factors. Here, we aimed to optimize cell culture models to allow infection with HCV from patient sera.

View Article and Find Full Text PDF

Background/objectives: Functional probiotics, particularly subsp. CKDB001, have shown potential as a therapeutic option for metabolic dysfunction-associated steatotic liver disease (MASLD). However, their effects have not been confirmed in in vivo systems.

View Article and Find Full Text PDF

The Causal Role of Ectopic Fat Deposition in the Pathogenesis of Metabolic Syndrome.

Int J Mol Sci

December 2024

Department of Internal Medicine, Erasmus Medical Center (Erasmus MC), Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.

Consuming a "modern" Western diet and overnutrition may increase insulin secretion. Additionally, nutrition-mediated hyperinsulinemia is a major driver of ectopic fat deposition. The global prevalence of metabolic syndrome is high and growing.

View Article and Find Full Text PDF

In vivo genome editing holds great therapeutic potential for treating monogenic diseases by enabling precise gene correction or addition. However, improving the efficiency of delivery systems remains a key challenge. In this study, we investigated the use of lipid nanoparticles (LNPs) for in vivo knock-in of ectopic DNA.

View Article and Find Full Text PDF

Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!