Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Homocysteine has been long considered a risk factor for atherosclerosis. However, cardiovascular events cannot be reduced through homocysteine lowering by B vitamin supplements. Although several association studies have reported an elevation of serum homocysteine levels in cardiovascular diseases, the relationship of homocysteine with ST-segment elevation myocardial infarction (STEMI) is not well established.
Methods: We prospectively enrolled STEMI patients who were consecutively admitted to an intensive care unit following coronary intervention in a single medical center in Taiwan. Control subjects were individuals who presented to the outpatient or emergency department with acute chest pain but subsequently revealed patent coronary arteries by coronary arteriography. The association between serum homocysteine levels and STEMI was investigated. A culture system using human coronary artery endothelial cells was also established to examine the toxic effects of homocysteine at the cellular level.
Results: Patients with chest pain were divided into two groups. The STEMI group included 56 patients who underwent a primary percutaneous coronary intervention. The control group included 17 subjects with patent coronary arteries. There was no difference in serum homocysteine levels (8.4 ± 2.2 vs. 7.6 ± 1.9 μmol/L, p = 0.142). When stratifying STEMI patients by the Killip classification into higher (Killip III-IV) and lower (Killip I-II) grades, CRP (3.3 ± 4.1 vs. 1.4 ± 2.3 mg/L, p = 0.032), peak creatine kinase (3796 ± 2163 vs. 2305 ± 1822 IU/L, p = 0.023), and SYNTAX scores (20.4 ± 11.1 vs. 14.8 ± 7.6, p = 0.033) were significantly higher in the higher grades, while serum homocysteine levels were similar. Homocysteine was not correlated with WBCs, CRP, or the SYNTAX score in STEMI patients. In a culture system, homocysteine at even a supraphysiological level of 100 μmol/L did not reduce the cell viability of human coronary artery endothelial cells.
Conclusions: Homocysteine was not elevated in STEMI patients regardless of Killip severity, suggesting that homocysteine is a bystander instead of a causative factor of STEMI. Our study therefore supports the current notion that homocysteine-lowering strategies are not essential in preventing cardiovascular disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809814 | PMC |
http://dx.doi.org/10.1186/s12872-018-0774-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!