Tocotrienols have been reported to have stronger bioactivities than tocopherols, and may therefore be suitable as a potent source of vitamin E in functional foods, supplements, and pharmaceuticals. However, their inclusion into new products is hindered by their low water-solubility and oral bioavailability. Oil-in-water emulsions (O/W) could provide an adequate delivery system for these bioactive compounds. Tocotrienols were tested in bulk oil and within O/W conventional emulsions (>10μm) and nanoemulsions (<350nm). The emulsions were prepared with medium chain triglycerides (MCT) as an oil phase (5 to 40% wt) and quillaja saponins as a natural surfactant. The gastrointestinal fate of the emulsion-based delivery systems was investigated using a simulated gastrointestinal tract (GIT). The physical properties of the emulsions (color, apparent viscosity) were affected with increased droplet concentration. The lipid phase composition (emulsion type and particle size) had a pronounced impact on the microstructure of the emulsions in different regions of the GIT. At simulated small intestine conditions, the rate of lipid digestion and tocotrienol bioaccessibility decreased in the following order: nanoemulsions>emulsions>bulk oil. These results suggest that emulsions containing small lipid droplets are particularly suitable for delivering tocotrienols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2017.11.033 | DOI Listing |
Sci Rep
January 2025
Department of Petroleum Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
Enhancing oil recovery in sandstone reservoirs, particularly through smart water flooding, is an appealing area of research that has been thoroughly documented. However, few studies have examined the formation of water-in-heavy oil emulsion because of the incompatibility between the injected water-folded ions, clay particles, and heavy fraction in the oil phase. In this study, we investigated the synergistic roles of asphaltene and clay in the smart water flooding process using a novel experimental approach.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Jiaxing Institute of Future Food, Jiaxing 314050, China. Electronic address:
Oleogels with solid-like properties can serve as substitutes for fats, thereby avoiding the consumption of high levels of saturated fatty acids. In this study, we developed a protein-polysaccharide composite network oleogel using whey protein isolate (WPI) and sodium alginate (SA) through an emulsion-templated method. Analysis with Fourier Transform Infrared (FTIR) spectroscopy confirmed the presence of hydrogen bonds and van der Waals forces between WPI and SA, which bolstered the oleogel's structure.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Changchun University, Changchun 130022, China. Electronic address:
This study developed a W/O/W emulsion gel encapsulating proanthocyanidins from Aronia melanocarpa (Michx.) Elliott (APC) using polyglycerol ricinoleate (PGPR) as the lipophilic emulsifier and sodium caseinate (NaCN)-alginate (Alg) as the hydrophilic emulsifier. The optimal preparation process was established based on particle size, zeta potential, phase separation, centrifugal stability, and microscopic morphology: 4.
View Article and Find Full Text PDFArch Microbiol
January 2025
School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
College of Animal Science, Guizhou University, Guiyang, Guizhou, People's Republic of China.
Background: Adjusting thickening agent proportions in nanoemulsion gel (NG) balances its transdermal and topical delivery properties, making it more effective for dermatophytosis treatment.
Methods: Carbomer 940 and α-pinene were used as model thickening agent and antifungal, respectively. A series of α-pinene NGs (αNG1, αNG2, αNG3) containing 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!