4-phenylpyridin-2-yl-guanidine (5b): a new inhibitor of the overproduction of pro-inflammatory cytokines (TNFα and Il1β) was identified from a high-throughput screening of a chemical library on human peripheral blood mononuclear cells (PBMCs) after LPS stimulation. Derivatives, homologues and rigid mimetics of 5b were designed and synthesized, and their cytotoxicity and ability to inhibit TNFα overproduction were evaluated. Among them, compound 5b and its mimetic 12 (2-aminodihydroquinazoline) showed similar inhibitory activities, and were evaluated in vivo in models of lung inflammation and neuropathic pain in mice. In particular, compound 12 proved to be active (5 mg/kg, ip) in both models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2018.01.049DOI Listing

Publication Analysis

Top Keywords

rigid mimetics
8
tnfα overproduction
8
neuropathic pain
8
lung inflammation
8
phenylpyridine-2-ylguanidines rigid
4
mimetics novel
4
novel inhibitors
4
inhibitors tnfα
4
overproduction beneficial
4
beneficial action
4

Similar Publications

Peptides are well known for forming nanoparticles, while DNA duplexes, triplexes and tetraplexes create rigid nanostructures. Accordingly, the covalent conjugation of peptides to DNA/RNA produces hybrid self-assembling features and may lead to interesting nano-assemblies distinct from those of their individual components. Herein, we report the preparation of a collagen mimetic peptide incorporating lysine in its backbone, with alkylamino side chains radially conjugated with G-rich PNA [collagen-(PNA-GGG)].

View Article and Find Full Text PDF
Article Synopsis
  • Exenatide (Ex4) is a peptide used to treat diabetes and obesity, and its effectiveness is influenced by a structural feature called the Trp-cage (Tc) motif.
  • The study investigates how different versions of Ex4 with modified Tc motifs affect thermal stability, aggregation, insulin secretion, and binding to the GLP-1 receptor (GLP-1R).
  • Findings indicate that while stronger Tc motifs increase resistance to instability and aggregation, they can negatively impact the bioactivity of Ex4 by interfering with key interactions needed for effective signaling in the GLP-1R.
View Article and Find Full Text PDF

Drawing inspiration from nature's own intricate designs, synthetic multimaterial structures have the potential to offer properties and functionality that exceed those of the individual components. However, several contemporary hurdles, from a lack of efficient chemistries to processing constraints, preclude the rapid and precise manufacturing of such materials. Herein, the development of a photocurable resin comprising color-selective initiators is reported, triggering disparate polymerization mechanisms between acrylate and thiol functionality.

View Article and Find Full Text PDF

When coordinating and adhering to a surface, microorganisms produce a biofilm matrix consisting of extracellular DNA, lipids, proteins, and polysaccharides that are intrinsic to the survival of bacterial communities. Indeed, bacteria produce a variety of structurally diverse polysaccharides that play integral roles in the emergence and maintenance of biofilms by providing structural rigidity, adhesion, and protection from environmental stressors. While the roles that polysaccharides play in biofilm dynamics have been described for several bacterial species, the difficulty in isolating homogeneous material has resulted in few structures being elucidated.

View Article and Find Full Text PDF

Cell-matrix interactions in 3D environments significantly differ from those in 2D cultures. As such, mechanisms of mechanotransduction in 2D cultures are not necessarily applicable to cell-encapsulating hydrogels that resemble features of tissue architecture. Accordingly, the characterization of molecular pathways in 3D matrices is expected to uncover insights into how cells respond to their mechanical environment in physiological contexts, and potentially also inform hydrogel-based strategies in cell therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!