The oxidative metabolism of metoprolol has been shown to display genetic polymorphism of the debrisoquine-type. The use of in vitro inhibition studies has been proposed as a means of defining whether one or more forms of cytochrome P-450 are involved in the monogenically-controlled metabolism of two substrates. We have, therefore, tested the ability of debrisoquine and other substrates to inhibit the oxidation of metoprolol by rat liver microsomes. Debrisoquine and guanoxan were potent competitive inhibitors of the alpha-hydroxylation and O-desmethylation of metoprolol as well as its metabolism by all routes (measured by substrate disappearance). Cimetidine and ranitidine, drugs which are known to impair the clearance of metoprolol in man, showed an inhibitory action comparable to that of debrisoquine in rat liver microsomes. Antipyrine, a compound whose metabolism is not impaired in poor metabolisers of debrisoquine, was found to be only a weak inhibitor of the metabolism of metoprolol. These findings suggest that the oxidation of metoprolol is linked closely to that of debrisoquine, cimetidine and ranitidine but not to that of antipyrine in the rat.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-2952(86)90186-3DOI Listing

Publication Analysis

Top Keywords

rat liver
12
liver microsomes
12
metabolism metoprolol
8
oxidation metoprolol
8
cimetidine ranitidine
8
metoprolol
7
debrisoquine
6
metabolism
5
metoprolol oxidation
4
rat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!