Influence of Parabens on Bacteria and Fungi Cellular Membranes: Studies in Model Two-Dimensional Lipid Systems.

J Phys Chem B

Department of Environmental Chemistry, Faculty of Chemistry and ‡Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.

Published: March 2018

Langmuir monolayers were used to study the influence of four commercially applied parabens on multicomponent systems composed of lipid species characteristic of the cellular membrane of microorganisms found in carbohydrates and proteins reaching products, including food and cosmetics. The aim of the undertaken studies was to shed new light on the problem of parabens' interactions with membrane lipids and their affinity for monolayers differing with regard to the composition, mutual lipid ratios, and physicochemical properties. The discussion is based on the π-A isotherm characteristics, surface morphology observation performed with BAM, and analysis of the diffraction data collected for the periodically ordered lipid domains present in the investigated multicomponent films. Our studies revealed that the selected parabens are capable of surface film modification and that the magnitude of this effect increases with the number of methylene groups in the ester part of paraben molecules. We found that the strongest destructive effect was observed for model 1 (Staphylococcus aureus), a lower effect was observed for model 2 (Pseudomonas aeruginosa), and the lowest effect was observed for model 3 (Candida albicans). It was inferred that such a trend appears due to the composition of the artificial membranes, i.e., above all, in the presence or lack of sterol molecules and the content of negatively charged lipids.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.7b10152DOI Listing

Publication Analysis

Top Keywords

observed model
12
influence parabens
4
parabens bacteria
4
bacteria fungi
4
fungi cellular
4
cellular membranes
4
membranes studies
4
model
4
studies model
4
model two-dimensional
4

Similar Publications

Population pharmacokinetics of erlotinib in patients with non-small cell lung cancer (NSCLC): A model-based meta-analysis.

Comput Biol Med

January 2025

Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea; Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Incheon, Republic of Korea; Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea; Department of Integrative Biotechnology, Yonsei University, Incheon, Republic of Korea. Electronic address:

Background: Erlotinib is a potent first-generation epidermal growth factor receptor tyrosine kinase inhibitor. Due to its proximity to the upper limit of tolerability, dose adjustments are often necessary to manage potential adverse reactions resulting from its pharmacokinetic (PK) variability.

Methods: Population PK studies of erlotinib were identified using PubMed databases.

View Article and Find Full Text PDF

Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based functional evaluation in a stroke model.

Comput Biol Med

January 2025

Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain. Electronic address:

The quantitative evaluation of motor function in experimental stroke models is essential for the preclinical assessment of new therapeutic strategies that can be transferred to clinical research; however, conventional assessment tests are hampered by the evaluator's subjectivity. We present an artificial intelligence-based system for the automatic, accurate, and objective analysis of target parameters evaluated by the ledged beam walking test, which offers higher sensitivity than the current methodology based on manual and visual counting. This system employs a residual deep network model, trained with DeepLabCut (DLC) to extract target paretic hindlimb coordinates, which are categorized to provide a ratio measurement of the animal's neurological deficit.

View Article and Find Full Text PDF

Myocardial infarction can lead to the loss of billions of cardiomyocytes, and while cell-based therapies are an option, immature nature of in vitro-generated human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) is a roadblock to their development. Existing iPSC differentiation protocols don't go beyond producing fetal iCMs. Recently, adult extracellular matrix (ECM) was shown to retain tissue memory and have some success driving tissue-specific differentiation in unspecified cells in various organ systems.

View Article and Find Full Text PDF

Study Objectives: This study assessed the utilization of potentially inappropriate medications (PIM) including oral sedative-hypnotic and atypical antipsychotic (OSHAA), healthcare resource utilization (HCRU), and costs among elderly individuals with insomnia and in the subpopulation with Alzheimer's Disease (AD) who also had a diagnosis of insomnia.

Methods: Using claims database containing International Classification of Diseases, 10th Revision (ICD-10) codes, the cohort included individuals aged ≥ 65 with incident insomnia (EI, N=152,969) and AD insomnia subpopulation (ADI, N=4,888). Proportion of patients utilizing atypical antipsychotics or oral sedative-hypnotic medications, namely z-drugs, benzodiazepines, doxepin, Dual Orexin Receptor Antagonists (DORAs), and melatonin agonists, were assessed.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!