The 14-3-3 protein HbGF14a interacts with a RING zinc finger protein to regulate expression of the rubber transferase gene in Hevea brasiliensis.

J Exp Bot

Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.

Published: April 2018

Hevea brasiliensis is a key commercial source of natural rubber (cis 1,4-polyisoprene). In H. brasiliensis, rubber transferase is responsible for cis-1,4-polymerization of isoprene units from isopentenyl diphosphate and thus affects the yield of rubber. Little is known about the regulatory mechanisms of the rubber transferase gene at a molecular level. In this study we show that the 5'UTR intron of the promoter of the rubber transferase gene (HRT2) suppresses the expression of HRT2. A H. brasiliensis RING zinc finger protein (designated as HbRZFP1) was able to interact specifically with the HRT2 promoter to down-regulate its transcription in vivo. A 14-3-3 protein (named as HbGF14a) was identified as interacting with HbRZFP1, both in yeast and in planta. Transient co-expression of HbGF14a and HbRZFP1-encoding cDNAs resulted in HbRZFP1-mediated HRT2 transcription inhibition being relieved. HbGF14a repressed the protein-DNA binding of HbRZFP1 with the HRT2 promoter in yeast. We propose a regulatory mechanism by which the binding of HbGF14a to HbRZFP1 interferes with the interaction of HbRZFP1 with the HRT2 promoter, thereby repressing the protein-DNA binding between them. This study provides new insights into the role of HbGF14a in mediating expression of the rubber transferase gene in Hevea brasiliensis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/ery049DOI Listing

Publication Analysis

Top Keywords

rubber transferase
20
transferase gene
16
hevea brasiliensis
12
hrt2 promoter
12
14-3-3 protein
8
ring zinc
8
zinc finger
8
finger protein
8
expression rubber
8
gene hevea
8

Similar Publications

Genome-Wide Identification and Expression Profile of () Gene Family in L.

Int J Mol Sci

January 2025

State Key Laboratory of Tropical Crop Breeding, Sanya Institute, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China.

The biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are essential for sesquiterpenes and triterpenes, respectively, is primarily governed by the mevalonate pathway, wherein () plays a pivotal role. This study identified eight members of the FPS gene family in , designated -, through bioinformatics analysis, revealing their distribution across several chromosomes and a notable tandem gene cluster. The genes exhibited strong hydrophilic properties and key functional motifs crucial for enzyme activity.

View Article and Find Full Text PDF

Car tyres are considered to release a substantial amount of particles to the environment. Due to the high emission volumes and the chemical risks associated with tyre rubber, there is an urgent need to quantify their ecotoxicological effects. The effects of exposure to particles derived from end-of-life tyres were investigated on the Baltic clam (Macoma balthica), which is one of the key invertebrate species living in the soft-bottom sediments of the northern Baltic Sea.

View Article and Find Full Text PDF

Diphenyl ether (DE) is a chemical compound being used in a number of industries such as soap, detergents, perfumes, adhesive, dyes, herbicides and as a flame retardant in plastics, rubbers and textiles, etc. DE is the final debromination product of polybrominated diphenyl ethers (PBDEs) under anaerobic conditions. The present investigation evaluated the genotoxic, biochemical, histopathological, ultrastructural (SEM) and biomolecular (ATR-FTIR) changes in the zebrafish larvae after DE exposure.

View Article and Find Full Text PDF

Proteomic and Targeted Lipidomic Analyses of Fluid and Rigid Rubber Particle Membrane Domains in Guayule.

Plants (Basel)

October 2024

Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH 44691, USA.

Rubber (-1,4-polyisoprene) is produced in cytosolic unilamellar vesicles called rubber particles (RPs), and the protein complex responsible for this synthesis, the rubber transferase (RTase), is embedded in, or tethered to, the membranes of these RPs. Solubilized enzyme activity is very difficult to achieve because the polymerization of highly hydrophilic substrates into hydrophobic polymers requires a polar/non-polar interface and a hydrophobic compartment. Using guayule () as a model rubber-producing species, we optimized methods to isolate RP unilamellear membranes and then a subset of membrane microdomains (detergent-resistant membranes) likely to contain protein complexes such as RTase.

View Article and Find Full Text PDF

Genome-wide identification of oxidosqualene cyclase genes regulating natural rubber in Taraxacum kok-saghyz.

Planta

September 2024

Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China.

Nine TkOSC genes have been identified by genome-wide screening. Among them, TkOSC4-6 might be more crucial for natural rubber biosynthesis in Taraxacum kok-saghyz roots. Taraxacum kok-saghyz Rodin (TKS) roots contain large amounts of natural rubber, inulin, and valuable metabolites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!