Background: Models of epigenetic aging (epigenetic clocks) have been implicated as potentially useful markers for cancer risk and prognosis. Using 2 previously published methods for modeling epigenetic age, Horvath's clock and epiTOC, we investigated epigenetic aging patterns related to World Health Organization grade and molecular subtype as well as associations of epigenetic aging with glioma survival and recurrence.
Methods: Epigenetic ages were calculated using Horvath's clock and epiTOC on 516 lower-grade glioma and 141 glioblastoma cases along with 136 nontumor (normal) brain samples. Associations of tumor epigenetic age with patient chronological age at diagnosis were assessed with correlation and linear regression, and associations were validated in an independent cohort of 203 gliomas. Contribution of epigenetic age to survival prediction was assessed using Cox proportional hazards modeling. Sixty-three samples from 18 patients with primary-recurrent glioma pairs were also analyzed and epigenetic age difference and rate of epigenetic aging of primary-recurrent tumors were correlated to time to recurrence.
Results: Epigenetic ages of gliomas were near-universally accelerated using both Horvath's clock and epiTOC compared with normal tissue. The 2 independent models of epigenetic aging were highly associated with each other and exhibited distinct aging patterns reflective of molecular subtype. EpiTOC was found to be a significant independent predictor of survival. Epigenetic aging of gliomas between primary and recurrent tumors was found to be highly variable and not significantly associated with time to recurrence.
Conclusions: We demonstrate that epigenetic aging reflects coherent modifications of the epigenome and can potentially provide additional prognostic power for gliomas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007761 | PMC |
http://dx.doi.org/10.1093/neuonc/noy003 | DOI Listing |
Nat Rev Genet
January 2025
Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.
Traditionally, differences among individuals have been divided into genetic and environmental causes. However, both types of variation can underlie regulatory changes in gene expression - that is, epigenetic changes - that persist across cell divisions (developmental differentiation) and even across generations (transgenerational inheritance). Increasingly, epigenetic variation among individuals is recognized as an important factor in human diseases and ageing.
View Article and Find Full Text PDFExp Hematol
January 2025
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin, China.. Electronic address:
Hematopoietic stem cells (HSCs) are central to blood formation and play a pivotal role in hematopoietic and systemic aging. With aging, HSCs undergo significant functional changes, such as an increased stem cell pool, declined homing and reconstitution capacity, and skewed differentiation towards myeloid and megakaryocyte/platelet progenitors. These phenotypic alterations are likely due to the expansion of certain clones, known as clonal hematopoiesis (CH), which leads to disrupted hematopoietic homeostasis, including anemia, impaired immunity, higher risks of hematological malignancies, and even associations with cardiovascular disease, highlighting the broader impact of HSC aging on overall health.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India.
Hematopoietic stem cells are a unique population of tissue-resident multipotent cells with an extensive ability to self-renew and regenerate the entire lineage of differentiated blood cells. Stem cells reside in a highly specialized microenvironment with surrounding supporting cells, forming a complex and dynamic network to preserve and maintain their function. The survival, activation, and quiescence of stem cells are largely influenced by niche-derived signals, with aging niche contributing to a decline in stem cell function.
View Article and Find Full Text PDFAging Cell
January 2025
Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA.
Epigenetic clocks are a common group of tools used to measure biological aging-the progressive deterioration of cells, tissues, and organs. Epigenetic clocks have been trained almost exclusively using blood-based tissues, but there is growing interest in estimating epigenetic age using less-invasive oral-based tissues (i.e.
View Article and Find Full Text PDFAging Med (Milton)
December 2024
Department of Laboratory Medicine The Second Xiangya Hospital, Central South University Changsha Hunan China.
Objectives: To investigate the effects of suberoylanilide hydroxamic acid (SAHA) on lung fibroblast activation and to examine the role of p66Shc in this process.
Methods: An in vitro pulmonary fibrosis model was established using transforming growth factor-β (TGF-β)-induced MRC-5 lung fibroblasts. The proliferation and migration capacities of MRC-5 cells, along with the expression of fibrosis-related genes, were assessed following treatment with SAHA and/or silence of p66Shc.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!