The mitotic checkpoint system ensures the fidelity of chromosome segregation in mitosis by preventing premature initiation of anaphase until correct bipolar attachment of chromosomes to the mitotic spindle is reached. It promotes the assembly of a mitotic checkpoint complex (MCC), composed of BubR1, Bub3, Cdc20, and Mad2, which inhibits the activity of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. When the checkpoint is satisfied, anaphase is initiated by the disassembly of MCC. Previous studies indicated that the dissociation of APC/C-bound MCC requires ubiquitylation and suggested that the target of ubiquitylation is the Cdc20 component of MCC. However, it remained unknown how ubiquitylation causes the release of MCC from APC/C and its disassembly and whether ubiquitylation of additional proteins is involved in this process. We find that ubiquitylation causes the dissociation of BubR1 from Cdc20 in MCC and suggest that this may lead to the release of MCC components from APC/C. BubR1 in MCC is ubiquitylated by APC/C, although to a lesser degree than Cdc20. The extent of BubR1 ubiquitylation was markedly increased in recombinant MCC that contained a lysine-less mutant of Cdc20. Mutation of lysine residues to arginines in the N-terminal region of BubR1 partially inhibited its ubiquitylation and slowed down the release of MCC from APC/C, provided that Cdc20 ubiquitylation was also blocked. It is suggested that ubiquitylation of both Cdc20 and BubR1 may be involved in their dissociation from each other and in the release of MCC components from APC/C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828624PMC
http://dx.doi.org/10.1073/pnas.1720312115DOI Listing

Publication Analysis

Top Keywords

release mcc
16
mitotic checkpoint
12
mcc
11
ubiquitylation
9
checkpoint complex
8
anaphase-promoting complex/cyclosome
8
ubiquitylation cdc20
8
mcc apc/c
8
mcc components
8
components apc/c
8

Similar Publications

Introduction: This study aims to develop immediate release tablet formulations of lornoxicam (LRX) using hot melt extrusion (HME)-based fused deposition modeling (FDM) focusing on the adjustment of drug release by arranging infill densities and evaluating microcrystalline cellulose II (MCC II) as a disintegrating agent for HME-FDM purposes. LRX is a poorly soluble drug that exhibits pH-dependent solubility with a high thermal degradation temperature. These characteristics make it an ideal model drug for the HME-based FDM technique.

View Article and Find Full Text PDF

In Bayesian phylogenetic and phylodynamic studies it is common to summarise the posterior distribution of trees with a time-calibrated consensus phylogeny. While the maximum clade credibility (MCC) tree is often used for this purpose, we here show that a novel consensus tree method - the highest independent posterior subtree reconstruction, or HIPSTR - contains consistently higher supported clades over MCC. We also provide faster computational routines for estimating both consensus trees in an updated version of TreeAnnotator X, an open-source software program that summarizes the information from a sample of trees and returns many helpful statistics such as individual clade credibilities contained in the consensus tree.

View Article and Find Full Text PDF

The aim of this study was to develop a thermosensitive mucoadhesive (MA) in situ nasal gel for sumatriptan. A 3D response surface methodology (Design of Expert version 11) was employed to formulate nine different formulations. The Pluronic F-127 concentration (X1) and chitosan concentration (X2) were selected as independent factors.

View Article and Find Full Text PDF

Corrole-based photothermal nanocomposite hydrogel with nitric oxide release for diabetic wound healing.

Acta Biomater

December 2024

Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China. Electronic address:

The management of chronic diabetic wounds remains a significant challenge due to persistent bacterial infections and impaired angiogenesis. Herein, we reported a nanocomposite hydrogel (M/P-SNO/G) incorporated with M/P-SNO nanoparticles engineered by supramolecular assembly of the photosensitizing mono-carboxyl corrole (MCC) and S-nitrosothiol-modified polyethylene glycol (mPEG-SNO) for synergistic photothermal therapy (PTT)/nitric oxide (NO) treatment of diabetic wounds. The strong π-π interaction among aggregated MCC in M/P-SNO enhances the optical absorption and photothermal ability, thereby facilitating the precise release of NO upon laser irradiation.

View Article and Find Full Text PDF

The effect of filler particle size on API homogeneity of controlled release formulations via continuous twin-screw wet granulation.

Int J Pharm

January 2025

Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium. Electronic address:

Article Synopsis
  • Previous research indicated that CR formulations using HPMC via twin-screw wet granulation resulted in uneven distribution of active pharmaceutical ingredients (APIs) within granules due to rapid hydration and swelling properties of HPMC.
  • Attempts to improve uniformity by varying the liquid-to-solid ratio, modifying screw configurations, or using different fillers were unsuccessful.
  • The study found that using smaller particle size fillers improved API distribution in granules compared to larger fillers, with microcrystalline cellulose (MCC) yielding the most consistent results, while other filler combinations sometimes led to underdosing issues in smaller granule fractions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!