Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent.

ACS Appl Mater Interfaces

School of Chemistry and Chemical Engineering , South China University of Technology, Guangzhou 510641 , People's Republic of China.

Published: March 2018

AI Article Synopsis

Article Abstract

The separation of ethane from ethylene using cryogenic distillation is an energy-intensive process in the industry. With lower energetic consumption, the adsorption technology provides the opportunities for developing the industry with economic sustainability. We report an iron-based metal-organic framework PCN-245 with interpenetrated structures as an ethane-selective adsorbent for ethylene/ethane separation. The material maintains stability up to 625 K, even after exposure to 80% humid atmosphere for 20 days. Adsorptive separation experiments on PCN-245 at 100 kPa and 298 K indicated that ethane and ethylene uptakes of PCN-245 were 3.27 and 2.39 mmol, respectively, and the selectivity of ethane over ethylene was up to 1.9. Metropolis Monte Carlo calculations suggested that the interpenetrated structure of PCN-245 created greater interaction affinity for ethane than ethylene through the crossing organic linkers, which is consistent with the experimental results. This work highlights the potential application of adsorbents with the interpenetrated structure for ethane separation from ethylene.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b19414DOI Listing

Publication Analysis

Top Keywords

ethane ethylene
20
interpenetrated structure
8
ethane
6
ethylene
6
pcn-245
5
selective adsorption
4
adsorption ethane
4
ethylene pcn-245
4
pcn-245 impacts
4
interpenetrated
4

Similar Publications

Air contamination by 1,2-dichloroethane (1,2-DCE) is recognized as a threat across countries. Addressing this problem is challenging due to the absence of clearly defined biological standards for monitoring 1,2-DCE exposure among humans. Moreover, studies on the impacts of 1,2-DCE exposure on human health are limited.

View Article and Find Full Text PDF

Low-temperature catalytic oxidation of ethanol over doped nickel phosphates.

Environ Sci Pollut Res Int

January 2025

Laboratory of Coordination and Analytical Chemistry (LCCA), Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, Ben Maachou Road, B.P: 20, 24000, El Jadida, Morocco.

This work is focused on the synthesis and performance of Ni(PO)-based catalysts doped with Cu, Co, Mn, Ce, Zr, and Mg for the complete oxidation of ethanol, aiming at reducing emissions from ethanol-blended gasoline. Nickel phosphate was prepared via the co-precipitation method, followed by impregnation with the specified dopants. The catalysts were thoroughly characterized by XRD, N-physisorption, XRF, FTIR and Raman spectroscopy, FESEM, NH-TPD, CO-TPD, and H-TPR to explain their performance.

View Article and Find Full Text PDF

Synthesis of ethane from CO by a methyl transferase-inspired molecular catalyst.

Proc Natl Acad Sci U S A

January 2025

School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, WB 700032, India.

Molecular catalysts with a single metal center are reported to reduce CO to a wide range of valuable single-carbon products like CO, HCOOH, CHOH, etc. However, these catalysts cannot reduce CO to two carbon products like ethane or ethylene and the ability to form C-C from CO remains mostly limited to heterogeneous material-based catalysts. We report a set of simple iron porphyrins with pendant thiol group can catalyze the reduction of CO to ethane (CH) with HO as the proton source with a Faradaic yield >40% the rest being CO.

View Article and Find Full Text PDF

The discovery of new structures is very important for metal-organic framework (MOF) adsorbents and their application in gas separation, where the design of ligands and the selection of metal ions play a decisive role. Herein, we synthesized two isoreticular Zn-MOFs, UPC-250 and UPC-251, composed of imidazole-based tricarboxylic acid ligands and binuclear zinc clusters. The pore environment was regulated via modifying fluorine atoms at different positions of ligands, and one-step purification of ethylene from acetylene/ethylene/ethane ternary mixture was realized in UPC-251.

View Article and Find Full Text PDF

Strain W from Estuarine Sediments Dechlorinates 1,2-Dichloroethane under Elevated Salinity.

Environ Sci Technol

January 2025

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.

Organohalide-respiring bacteria (OHRB) have been found in various environments and play an indispensable role in the biogeochemical cycling and detoxification of halogenated organic compounds (HOCs). Currently, few ORHB have been reported to perform reductive dechlorination under high salinity conditions, indicating a knowledge gap on the diversity of OHRB and the survival strategy of OHRB in saline environments (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!