Verticillium wilt (VW), caused by soil-borne fungi of the genus Verticillium, is a serious disease affecting a wide range of plants and leading to a constant and major challenge to agriculture worldwide. Cotton (Gossypium hirsutum) is the world's most important natural textile fibre and oil crop. VW of cotton is a highly devastating vascular disease; however, few resistant germplasms have been reported in cotton. An increasing number of studies have shown that RNA interference (RNAi)-based host-induced gene silencing (HIGS) is an effective strategy for improving plant resistance to pathogens by silencing genes essential for the pathogenicity of these pathogens. Here, we have identified and characterized multifunctional regulators of G protein signalling (RGS) in the Verticillium dahliae virulence strain, Vd8. Of eight VdRGS genes, VdRGS1 showed the most significant increase in expression in V. dahliae after treating with the roots of cotton seedlings. Based on the phenotype detection of VdRGS1 deletion and complementation mutants, we found that VdRGS1 played crucial roles in spore production, hyphal development, microsclerotia formation and pathogenicity. Tobacco rattle virus-mediated HIGS in cotton plants silenced VdRGS1 transcripts in invaded V. dahliae strains and enhanced broad-spectrum resistance to cotton VW. Our data demonstrate that VdRGS1 is a conserved and essential gene for V. dahliae virulence. HIGS of VdRGS1 provides effective control against V. dahliae infection and could obtain the durable disease resistance in cotton and in other VW-susceptible host crops by developing the stable transformants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6096726 | PMC |
http://dx.doi.org/10.1111/pbi.12900 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biology, Indiana University, Bloomington, IN 47405.
Plant Physiol
December 2024
State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
Arbuscular mycorrhizal fungi (AMF) can transfer inorganic nitrogen (N) from the soil to host plants to cope with drought stress, with arginine synthesis and NH4+ transport being pivotal processes. However, the regulatory mechanism underlying these processes remains unclear. Here, we found that drought stress upregulated expression of genes involved in the N transfer pathway and putrescine and glutathione synthesis in the mycorrhizal structures of Rhizophagus irregularis within alfalfa (Medicago sativa) roots, i.
View Article and Find Full Text PDFCrit Rev Biotechnol
December 2024
Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic.
Fungal diseases threaten the forest ecosystem, impacting tree health, productivity, and biodiversity. Conventional approaches to combating diseases, such as biological control or fungicides, often reach limits regarding efficacy, resistance, non-target organisms, and environmental impact, enforcing alternative approaches. From an environmental and ecological standpoint, an RNA interference (RNAi) mediated double-stranded RNA (dsRNA)-based strategy can effectively manage forest fungal pathogens.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832003, China.
Cotton is often threatened by Verticillium wilt caused by . Understanding the molecular mechanism of -cotton interaction is important for the prevention of this disease. To analyze the transcriptome profiles in and cotton simultaneously, the strongly pathogenic strain Vd592 was inoculated into cotton, and the infected cotton roots at 36 h and 3 d post infection were subjected to dual RNA-seq analysis.
View Article and Find Full Text PDFPhytopathology
November 2024
Chengdu, China;
Clubroot disease caused by the biotrophic pathogen , is one of the most serious threats to cruciferous crops production worldwide. is known for rapid adaptive evolution to overcome resistance in varieties. It is urgent to establish alternative management to control .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!