The anterior cingulate cortex can be divided into distinct ventral (subgenual, sgACC) and dorsal (dACC), portions. The role of dACC in value-based decision-making is hotly debated, while the role of sgACC is poorly understood. We recorded neuronal activity in both regions in rhesus macaques performing a token-gambling task. We find that both encode many of the same variables; including integrated offered values of gambles, primary as well as secondary reward outcomes, number of current tokens and anticipated rewards. Both regions exhibit memory traces for offer values and putative value comparison signals. Both regions use a consistent scheme to encode the value of the attended option. This result suggests that neurones do not appear to be specialized for specific offers (that is, neurones use an attentional as opposed to labelled line coding scheme). We also observed some differences between the two regions: (i) coding strengths in dACC were consistently greater than those in sgACC, (ii) neurones in sgACC responded especially to losses and in anticipation of primary rewards, while those in dACC showed more balanced responding and (iii) responses to the first offer were slightly faster in sgACC. These results indicate that sgACC and dACC have some functional overlap in economic choice, and are consistent with the idea, inspired by neuroanatomy, which sgACC may serve as input to dACC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5902660 | PMC |
http://dx.doi.org/10.1111/ejn.13865 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!