It is well documented that hydropower plants can affect the dynamics of fish populations through landscape alterations and the creation of new barriers. Less emphasis has been placed on the examination of the genetic consequences for fish populations of the construction of dams. The relatively few studies that focus on genetics often do not consider colonization history and even fewer tend to use this information for conservation purposes. As a case study, we used a 3-pronged approach to study the influence of historical processes, contemporary landscape features, and potential future anthropogenic changes in landscape on the genetic diversity of a fish metapopulation. Our goal was to identify the metapopulation's main attributes, detect priority areas for conservation, and assess the consequences of the construction of hydropower plants for the persistence of the metapopulation. We used microsatellite markers and coalescent approaches to examine historical colonization processes, traditional population genetics, and simulations of future populations under alternate scenarios of population size reduction and gene flow. Historical gene flow appeared to have declined relatively recently and contemporary populations appeared highly susceptible to changes in landscape. Gene flow is critical for population persistence. We found that hydropower plants could lead to a rapid reduction in number of alleles and to population extirpation 50-80 years after their construction. More generally, our 3-pronged approach for the analyses of empirical genetic data can provide policy makers with information on the potential impacts of landscape changes and thus lead to more robust conservation efforts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cobi.13093 | DOI Listing |
Environ Res
January 2025
State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
The water-level fluctuation zones (WLFZ) in Three Gorges Reservoir encounter several ecological challenges, particularly potential greenhouse gas (GHG) emissions and water eutrophication due to water level variations. Therefore, to address those challenges, our study explores the relationships between soil properties (Phosphorus cycle), plant conditions, microbial community, and GHG emissions. Our findings reveal that aboveground plants are the key link in the WLFZ ecosystem, which has previously been overlooked.
View Article and Find Full Text PDFSci Total Environ
January 2025
Instituto Geológico y Minero de España (CSIC), Ríos Rosas 23, ES-28003 Madrid, Spain. Electronic address:
Mountain lakes are particularly fragile ecosystems undergoing important ecological and depositional transformations associated with ongoing global change. However, the history of anthropogenic impacts on mountain lakes and their catchments is much longer, in many cases featuring millennia of summer pastoral farming. More recently, the growing demand for raw materials and energy linked to industrialization, particularly accelerated since the 19th century CE, meant a further increase in human impact on mountain areas.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 5, D-53115, Bonn, Germany.
Climate change significantly challenges smallholder mixed crop-livestock (MCL) systems in sub-Saharan Africa (SSA), affecting food and feed production. This study enhances the SIMPLACE modeling framework by incorporating crop-vegetation-livestock models, which contribute to the development of sustainable agricultural practices in response to climate change. Applying such a framework in a domain in West Africa (786,500 km) allowed us to estimate the changes in crop (Maize, Millet, and Sorghum) yield, grass biomass, livestock numbers, and greenhouse gas emission in response to future climate scenarios.
View Article and Find Full Text PDFSci Rep
January 2025
Yunnan Agricultural Reclamation Coffee Co., Ltd., Kunming, 650220, China.
Arabica coffee, as one of the world's three native coffee species, requires rational planning for its growing areas to ensure ecological and sustainable agricultural development. This study aims to establish a decision-making framework using Geographic Information Systems (GIS) and Multi-Criteria Decision-Making (MCDM), with a focus on assessing the habitat suitability of Arabica coffee in Yunnan Province, China. The impacts of climate, topography, soil, and socio-economic factors were considered by selecting 13 criteria through correlation analysis.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
The anatomical reorganization required for C photosynthesis should also impact plant hydraulics. Most C plants possess large bundle sheath cells and high vein density, which should also lead to higher leaf capacitance and hydraulic conductance (K). Paradoxically, the C pathway reduces water demand and increases water use efficiency, creating a potential mismatch between supply capacity and demand in C plant water relations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!