Poly(ADP-ribose) polymerase-1 regulates fibroblast activation in systemic sclerosis.

Ann Rheum Dis

Department of Internal Medicine 3 for Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany.

Published: May 2018

Objectives: The enzyme poly(ADP-ribose) polymerase-1 (PARP-1) transfers negatively charged ADP-ribose units to target proteins. This modification can have pronounced regulatory effects on target proteins. Recent studies showed that PARP-1 can poly(ADP-ribosyl)ate (PARylate) Smad proteins. However, the role of PARP-1 in the pathogenesis of systemic sclerosis (SSc) has not been investigated.

Methods: The expression of PARP-1 was determined by quantitative PCR and immunohistochemistry. DNA methylation was analysed by methylated DNA immunoprecipitation assays. Transforming growth factor-β (TGFβ) signalling was assessed using reporter assays, chromatin immunoprecipitation assays and target gene analysis. The effect of PARP-1 inactivation was investigated in bleomycin-induced and topoisomerase-induced fibrosis as well as in tight-skin-1 (Tsk-1) mice.

Results: The expression of PARP-1 was decreased in patients with SSc, particularly in fibroblasts. The promoter of was hypermethylated in SSc fibroblasts and in TGFβ-stimulated normal fibroblasts. Inhibition of DNA methyltransferases (DNMTs) reduced the promoter methylation and reactivated the expression of PARP-1. Inactivation of PARP-1 promoted accumulation of phosphorylated Smad3, enhanced Smad-dependent transcription and upregulated the expression of TGFβ/Smad target genes. Inhibition of PARP-1 enhanced the effect of TGFβ on collagen release and myofibroblast differentiation in vitro and exacerbated experimental fibrosis in vivo. PARP-1 deficiency induced a more severe fibrotic response to bleomycin with increased dermal thickening, hydroxyproline content and myofibroblast counts. Inhibition of PARylation also exacerbated fibrosis in Tsk-1 mice and in mice with topoisomerase-induced fibrosis.

Conclusion: PARP-1 negatively regulates canonical TGFβ signalling in experimental skin fibrosis. The downregulation of PARP-1 in SSc fibroblasts may thus directly contribute to hyperactive TGFβ signalling and to persistent fibroblast activation in SSc.

Download full-text PDF

Source
http://dx.doi.org/10.1136/annrheumdis-2017-212265DOI Listing

Publication Analysis

Top Keywords

parp-1
12
expression parp-1
12
tgfβ signalling
12
ssc fibroblasts
12
polyadp-ribose polymerase-1
8
fibroblast activation
8
systemic sclerosis
8
target proteins
8
immunoprecipitation assays
8
parp-1 inactivation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!