The glucose analogue 2-deoxyglucose (2-DG) impedes cancer progression in animal models and is currently being assessed as an anticancer therapy, yet the mode of action of this drug of high clinical significance has not been fully delineated. In an attempt to better characterize its pharmacodynamics, an integrative UPLC-Q-Exactive-based joint metabolomic and lipidomic approach was undertaken to evaluate the metabolic perturbations induced by this drug in human HaCaT keratinocyte cells. R-XCMS data processing and subsequent multivariate pattern recognition, metabolites identification, and pathway analyses identified eight metabolites that were most significantly changed upon a 3 h 2-DG exposure. Most of these dysregulated features were emphasized in the course of lipidomic profiling and could be identified as ceramide and glucosylceramide derivatives, consistently with their involvement in cell death programming. Even though metabolomic analyses did not generally afford such clear-cut dysregulations, some alterations in phosphatidylcholine and phosphatidylethanolamine derivatives could be highlighted as well. Overall, these results support the adequacy of the proposed analytical workflow and might contribute to a better understanding of the mechanisms underlying the promising effects of 2-DG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.7b00805 | DOI Listing |
Molecules
January 2025
Graduate School of Biotechnology, Kyung Hee University, Yongin-si 17104, Republic of Korea.
The decline in autophagy disrupts homeostasis in skin cells, leading to oxidative stress, energy deficiency, and inflammation-all key contributors to skin photoaging. Consequently, activating autophagy has become a focal strategy for delaying skin photoaging. Natural plants are rich in functional molecules and widely used in the development of anti-photoaging cosmetics.
View Article and Find Full Text PDFMolecules
January 2025
Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
Vascular endothelial growth factor (VEGF), also known as VEGF-A, has been linked to various diseases, such as wet age-related macular degeneration (wAMD) and cancer. Even though there are VEGF inhibitors that are currently commercially available in clinical applications, severe adverse effects have been associated with these treatments. There is still a need to develop novel VEGF-based therapeutics against these VEGF-related diseases.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
School of Life Sciences, Yunnan Normal University, Kunming 650500, China.
Previous studies have shown that the endogenous electric field (EF) is an overriding cure in guiding cell migration toward the wound center to promote wound healing, but the mechanism underlying is unclear. In this study, we investigated the molecular mechanism of electric field-guided cell migration in human keratinocyte HaCaT cells. Our results showed that HaCaT cells migrate toward the anode under EFs.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
Spheroids, as three-dimensional (3D) cell aggregates, can be prepared using various methods, including hanging drops, microwells, microfluidics, magnetic manipulation, and bioreactors. However, current spheroid manufacturing techniques face challenges such as complex workflows, the need for specialized personnel, and poor batch reproducibility. In this study, we designed a support-free, 3D-printed microwell chip and developed a compatible low-cell-adhesion process.
View Article and Find Full Text PDFGels
January 2025
Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
, a prevalent zoonotic pathogen, poses a significant threat to skin wound infections. This study evaluates the bactericidal efficacy of self-assembled peptide hydrogels, PPI45 and PPI47, derived from the defensin-derived peptide PPI42, against ATCC43300. The high-level preparation of PPI45 and PPI47 was achieved with yields of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!