A chromatographic procedure (HPLC-DAD) using a relatively rapid gradient has been combined with a chemometric curve deconvolution method, multivariate curve resolution-alternating least squares (MCR-ALS), in order to quantify caffeine and chlorogenic acid in green coffee beans. Despite that the HPLC analysis (at these specific operating conditions) presents some coeluting peaks, MCR-ALS allowed their resolution and, consequently, the creation of a calibration curve to be used for the quantification of the analytes of interest; this procedure led to a high accuracy in the quantification of caffeine and chlorogenic acid present in the samples. In a second part of this study, the possibility of classifying the green coffee beans on the basis of their cultivar (Arabica or Robusta), by partial least squares discriminant analysis (PLS-DA) and soft independent modeling of class analogies (SIMCA), has been explored. SIMCA resulted in 100% of sensitivity and specificity for the Arabica class, while for the Robusta, it reached 66.7% of sensitivity and 100% of specificity, or 100% of sensitivity and 100% of specificity, depending on the extraction procedure followed prior to the chromatographic analysis; PLS-DA achieved 100% of correct classification independently of the procedure used for the extraction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-1379-6DOI Listing

Publication Analysis

Top Keywords

caffeine chlorogenic
12
chlorogenic acid
12
quantification caffeine
8
green coffee
8
coffee beans
8
analysis pls-da
8
100% sensitivity
8
sensitivity 100%
8
100% specificity
8
100%
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!