A nanocrystalline layer was prepared on the surface of 34CrMo4 steel by time controlling shot peening (SP, i.e., 1, 5, 10, and 20 minutes). Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) analysis, and transmission electron microscope (TEM) were applied to analyze the surface, cross-sections, and grain size of the specimens before and after SP. The electrochemical corrosion behavior was used to simulate a liquid under the oil and gas wells environment. It was characterized by the potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS). The analysis results show that the surfaces of the SP samples were very rough and had numerous cracks. A passive film on SP surface was formed by nanocrystalline grains. However, the passive film formed in the initial stage was not dense or uniform, and cracks occurred in the passive film during peening, resulting in a decrease in corrosion resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752997PMC
http://dx.doi.org/10.1155/2017/1928198DOI Listing

Publication Analysis

Top Keywords

passive film
12
34crmo4 steel
8
shot peening
8
corrosion properties
4
properties 34crmo4
4
steel modified
4
modified shot
4
peening nanocrystalline
4
nanocrystalline layer
4
layer prepared
4

Similar Publications

High-Efficiency Fluorescent-Coupled Optical Fiber Passive Tactile Sensor with Integrated Microlens for Surface Texture and Roughness Detection.

ACS Appl Mater Interfaces

December 2024

College of Electrical and Information Engineering, SANYA Offshore Oil and Gas Research Institute, Northeast Petroleum University, Daqing 163318, China.

Integrating ZnS:Cu@AlO/polydimethylsiloxane (PDMS) flexible matrices with optical fibers is crucial for the development of practical passive sensors. However, the fluorescence coupling efficiency is constrained by the small numerical aperture of the fiber, leading to a reduction in sensor sensitivity. To mitigate this limitation, a microsphere lens was fabricated at the end of the multimode fiber, which resulted in a 21.

View Article and Find Full Text PDF

High-Brightness Color-Tunable AC-Driven Quantum Dot Light-Emitting Diodes for Integrated Passive High-Electric-Field Contactless Detection.

ACS Appl Mater Interfaces

December 2024

Institute of Optoelectronics Technology, Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China.

This work explores the carrier recombination dynamics of AC-driven quantum dot (QD) light-emitting diodes (AC-QLEDs) and proposes their application in the field of electric field contactless detection. Different sequences of green QD (GQD)/red QD (RQD) bilayer thin films as the emission layer of AC-QLEDs were fabricated via film transfer printing to ensure the complete morphology of each layer. AC-QLEDs with the emission layer as the sequence of GQD + RQD (GR-QLEDs) show a significantly enhanced carrier recombination efficiency due to its stable energy level structure, achieving the highest peak brightness ever recorded for vertically emitting brightness of 1648.

View Article and Find Full Text PDF

The propulsive fins of ray-finned fish are used for large scale locomotion and fine maneuvering, yet also provide sensory feedback regarding hydrodynamic loading and the surrounding environment. This information is gathered via nerve cells in the webbing between their fin rays. A similar bioinspired system that can gather force feedback from fin motion could enable valuable insight into robotic underwater locomotion improving swimming efficiency and orientation.

View Article and Find Full Text PDF

The polymer dispersed liquid crystal (PDLC) holds potential application in smart windows, owing to its feasibility in regulating the transmittance of specific wavelength bands to improve energy utilization. Herein, a composite PDLC smart window is designed, which showcases high emissivity of 93.79% in the mid-infrared region and features the regulation of ultraviolet (UV), visible, and near-infrared (NIR) light.

View Article and Find Full Text PDF

Dynamic Variation in the Semiconductive Tendency of the Passive Film on Duplex Stainless Steel in Corrosion Environments.

Materials (Basel)

December 2024

Department of Materials Science and Engineering, Andong National University, 1375 Gyeongdong-ro, Andong 36729, Gyeongbuk, Republic of Korea.

Duplex stainless steels, known for their excellent corrosion resistance, are employed in a variety of chloride solutions-acidic, neutral, and alkaline-due to a stable passive film that forms on their surfaces. This study involved polarization tests, EIS (Electrochemical Impedance Spectroscopy) measurements, Mott-Schottky plots, and XPS (X-Ray Photoelectron Spectroscopy) analyses in both static and dynamic conditions across acidic (1NaCl + 0.1N HCl, pH 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!