The scale-free dynamics of human brain activity, characterized by an elaborate temporal structure with scale-free properties, can be quantified using the power-law exponent (PLE) as an index. Power laws are well documented in nature in general, particularly in the brain. Some previous fMRI studies have demonstrated a lower PLE during cognitive-task-evoked activity than during resting state activity. However, PLE modulation during cognitive-task-evoked activity and its relationship with an associated behavior remain unclear. In this functional fMRI study in the resting state and face processing + control task, we investigated PLE during both the resting state and task-evoked activities, as well as its relationship with behavior measured using mean reaction time (mRT) during the task. We found that (1) face discrimination-induced BOLD signal changes in the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), amygdala, and fusiform face area; (2) PLE significantly decreased during task-evoked activity specifically in mPFC compared with resting state activity; (3) most importantly, in mPFC, mRT significantly negatively correlated with both resting state PLE and the resting-task PLE difference. These results may lead to a better understanding of the associations between task performance parameters (e.g., mRT) and the scale-free dynamics of spontaneous and task-evoked brain activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752971PMC
http://dx.doi.org/10.1155/2017/2824615DOI Listing

Publication Analysis

Top Keywords

resting state
24
study resting
8
state face
8
scale-free dynamics
8
cognitive-task-evoked activity
8
state activity
8
ple
7
resting
6
state
6
activity
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!